A new dendrimeric cobalt(II) complex CoP has been obtained when reacting (5,15-bis[3,5-bis(tert-butyl)phenyl]-10,20-bis{4,6-bis[3,5-bis(3,6-di-tert-butylcarbazole-9-yl)phenoxy]pyrimidin-5-yl}porphine with Co(AcO)2·4H2O. The process of two-step two-way coordination of 1-methyl-2-(pyridin-4'-yl)-3,4-fullero[60]pyrrolidine (PyC60) with cobalt(II) porphyrin ends with the formation of a stable 1 : 2 complex, a triad of composition (PyC60)2CoP. The process has been completely kinetically described using UV-vis and fluorescent spectroscopy data. The stability constant (K) of the coordination complex is (9.9 ± 2.4) × 108 L2 mol–2 (log K = 9.0). The chemical structure of the triad has been determined by UV-vis, 1H NMR, and IR spectroscopy. The effect of PyC60 fluorescence quenching in the triad has been found and studied, and the static mechanism of the quenching process has been substantiated. The result can be used in optoelectronics to optimize the structures of donor–acceptor systems with the property of photoinduced electron transfer.