Строится точно решаемая модель линейного гармонического осциллятора с массой, зависящей от координат, в однородном гравитационном поле. Эта модель помещена в бесконечно глубокую потенциальную яму шириной $2a$ и соответствует точному решению угловой части уравнения Шредингера с одним из потенциалов Ото. Волновые функции модели осциллятора выражаются через полиномы Якоби. В пределе $a\to \infty$ уравнение движения, волновые функции и спектр энергии модели корректно сводятся к соответствующим результатам обычного нерелятивистского гармонического осциллятора с постоянной массой. Получено новое предельное соотношение, связывающее полиномы Якоби и Эрмита, дано доказательство его корректности двумя различными методами.