Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Modern control and diagnostic systems (CDS) usually determine only the technical condition (TC) at the current time, ie the CDS answers the question: a complex technical system (CTS) should be considered operational or not, and may provide little information on performance CTS even in the near future. Therefore, the existing scenarios of CDS operation do not provide for the assessment of the possibility of gradual failures, ie there is no forecasting of the technical condition. The processes of parameter degradation and degradation prediction are stochastic processes, the “behavior” of which is influenced by a combination of external and internal factors, so the deg-radation process can be described as a function that depends on changes in the internal parameters of CTS. The hybrid method involves the following steps. The first is to determine the set of initial characteristics that characterize the CTS vehicle. The second is the establishment of precautionary tolerances of degradation values of the characteristics that characterize the pre-failure technical con-dition of the CTS. The third is to determine the rational composition of informative indicators, which maximally determine the "behavior" of the initial characteristics. The fourth — implementa-tion of multiparameter monitoring, fixation of values of the controlled characteristics, formation of an information array of values of characteristics. Fifth — the adoption of a general model of the process of changing the characteristics of the CTS. Sixth — the formation of a real model of the process of changing the characteristics of Y(t) on the basis of an information array of values of char-acteristics obtained by multi-parameter monitoring. Seventh — forecasting the time of possible oc-currence of the pre-failure state of the CTS, which is carried out by extrapolating the obtained real model of the process of changing the characteristics of Y(t). It is proposed to use two types of mod-els: for medium- and long-term forecasting - polynomial models, for short-term forecasting — a lin-ear extrapolation model. At the final stage, forecast errors are determined for all types of models of degradation of pa-rameters and characteristics. Based on the results of the forecast verification, the models are adjust-ed
Modern control and diagnostic systems (CDS) usually determine only the technical condition (TC) at the current time, ie the CDS answers the question: a complex technical system (CTS) should be considered operational or not, and may provide little information on performance CTS even in the near future. Therefore, the existing scenarios of CDS operation do not provide for the assessment of the possibility of gradual failures, ie there is no forecasting of the technical condition. The processes of parameter degradation and degradation prediction are stochastic processes, the “behavior” of which is influenced by a combination of external and internal factors, so the deg-radation process can be described as a function that depends on changes in the internal parameters of CTS. The hybrid method involves the following steps. The first is to determine the set of initial characteristics that characterize the CTS vehicle. The second is the establishment of precautionary tolerances of degradation values of the characteristics that characterize the pre-failure technical con-dition of the CTS. The third is to determine the rational composition of informative indicators, which maximally determine the "behavior" of the initial characteristics. The fourth — implementa-tion of multiparameter monitoring, fixation of values of the controlled characteristics, formation of an information array of values of characteristics. Fifth — the adoption of a general model of the process of changing the characteristics of the CTS. Sixth — the formation of a real model of the process of changing the characteristics of Y(t) on the basis of an information array of values of char-acteristics obtained by multi-parameter monitoring. Seventh — forecasting the time of possible oc-currence of the pre-failure state of the CTS, which is carried out by extrapolating the obtained real model of the process of changing the characteristics of Y(t). It is proposed to use two types of mod-els: for medium- and long-term forecasting - polynomial models, for short-term forecasting — a lin-ear extrapolation model. At the final stage, forecast errors are determined for all types of models of degradation of pa-rameters and characteristics. Based on the results of the forecast verification, the models are adjust-ed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.