Матрицей-стрелкой называется матрица с нулями вне главной диагонали, первой строки и первого столбца. В работе исследуется пространство $M_{\operatorname{St}_n,\lambda}$ всех эрмитовых матриц-стрелок размера $(n+1)\times (n+1)$, имеющих заданный простой спектр $\lambda$. Доказано, что это пространство - гладкое $2n$-мерное многообразие с локально стандартным действием тора, описана топология и комбинаторика его пространства орбит. При $n\geqslant 3$ пространство орбит $M_{\operatorname{St}_n,\lambda}/T^n$ не является многогранником, а значит, $M_{\operatorname{St}_n,\lambda}$ не является квазиторическим многообразием. Тем не менее на $M_{\operatorname{St}_n,\lambda}$ имеется действие полупрямого произведения $T^n\rtimes\Sigma_n$ и его пространство орбит диффеоморфно специальному простому многограннику $\mathscr B^n$, который получается из куба срезкой граней коразмерности 2. При $n=3$ пространство орбит $M_{\operatorname{St}_3,\lambda}/T^3$ является полноторием, граница которого разбита регулярным образом на шестиугольники, что позволило описать кольца когомологий и эквивариантных когомологий шестимерного многообразия $M_{\operatorname{St}_3,\lambda}$ и еще одного многообразия - его двойника.
Библиография: 32 названия.