Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The development of tourism leads to changes in land-use demands and patterns, which are complex and dynamic, in tourist cities. Functional differences in land use produce different travel needs and have different impacts on traffic, especially on tourism. This paper explores the relationship between tourism land use and tourism traffic. Taking Xiamen Island as an example, using multivariable linear regression models, tourism land use is divided into accommodation land use, shopping land use and restaurant land use as the independent variables of the model; and the origin-destination (OD) density of traffic analysis zones (TAZs) during National Day in 2018 (October 1 to 5) is chosen as the dependent variable. To compare the different impacts between tourism land use and tourism traffic during the tourism and non-tourism periods, the non-tourism period (March 11 to 15) is further studied. The results show the following: (1) Xiamen, as a tourism city, has not only regular traffic but also tourism traffic, and traffic during the tourism period is totally different than that in the non-tourism period. (2) Tourism land use has a considerable impact on both tourism traffic and non-tourism traffic, but the impact is greater during the tourism period than the non-tourism period. (3) In the morning peak hour of both the tourism period and the non-tourism period, accommodation land use shows prominent effects on traffic. In the evening peak hour, shopping land use significantly impacts traffic. The study provides a basis for urban tourism land use adjustment to achieve the sustainable development of tourism traffic.
The development of tourism leads to changes in land-use demands and patterns, which are complex and dynamic, in tourist cities. Functional differences in land use produce different travel needs and have different impacts on traffic, especially on tourism. This paper explores the relationship between tourism land use and tourism traffic. Taking Xiamen Island as an example, using multivariable linear regression models, tourism land use is divided into accommodation land use, shopping land use and restaurant land use as the independent variables of the model; and the origin-destination (OD) density of traffic analysis zones (TAZs) during National Day in 2018 (October 1 to 5) is chosen as the dependent variable. To compare the different impacts between tourism land use and tourism traffic during the tourism and non-tourism periods, the non-tourism period (March 11 to 15) is further studied. The results show the following: (1) Xiamen, as a tourism city, has not only regular traffic but also tourism traffic, and traffic during the tourism period is totally different than that in the non-tourism period. (2) Tourism land use has a considerable impact on both tourism traffic and non-tourism traffic, but the impact is greater during the tourism period than the non-tourism period. (3) In the morning peak hour of both the tourism period and the non-tourism period, accommodation land use shows prominent effects on traffic. In the evening peak hour, shopping land use significantly impacts traffic. The study provides a basis for urban tourism land use adjustment to achieve the sustainable development of tourism traffic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.