Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
About 80% of stroke patients have hand motor dysfunction, and wearing finger rehabilitation machinery can enable patients to carry out efficient passive rehabilitation training independently. At present, many typical finger rehabilitation machines have been developed, and clinical experiments have confirmed the effectiveness of mechanically assisted finger rehabilitation. In this paper, the finger rehabilitation machinery will be classified in the actuation mode, and the terminal traction drive/motor drive/spring drive/rope drive/memory alloy drive/electroactive material drive/hydraulic drive/pneumatic drive technology and its typical applications are analyzed. Study the structure, control methods, overlap between mechanical bending nodes and finger joints, training modes, response speed, and driving force of various types of finger rehabilitation machinery. The advantages and disadvantages of various actuation methods of finger rehabilitation machinery are summarized. Finally, the difficulties and opportunities faced by the future development of finger rehabilitation machinery are prospected. In general, with the continuous improvement of quality of life, stroke patients need flexible, segmented control, accurate bending, multi-training mode, fast response, and good driving force finger rehabilitation machinery. This will also be a future hot research direction.
About 80% of stroke patients have hand motor dysfunction, and wearing finger rehabilitation machinery can enable patients to carry out efficient passive rehabilitation training independently. At present, many typical finger rehabilitation machines have been developed, and clinical experiments have confirmed the effectiveness of mechanically assisted finger rehabilitation. In this paper, the finger rehabilitation machinery will be classified in the actuation mode, and the terminal traction drive/motor drive/spring drive/rope drive/memory alloy drive/electroactive material drive/hydraulic drive/pneumatic drive technology and its typical applications are analyzed. Study the structure, control methods, overlap between mechanical bending nodes and finger joints, training modes, response speed, and driving force of various types of finger rehabilitation machinery. The advantages and disadvantages of various actuation methods of finger rehabilitation machinery are summarized. Finally, the difficulties and opportunities faced by the future development of finger rehabilitation machinery are prospected. In general, with the continuous improvement of quality of life, stroke patients need flexible, segmented control, accurate bending, multi-training mode, fast response, and good driving force finger rehabilitation machinery. This will also be a future hot research direction.
Recent advancements in exoskeleton technology, both passive and active, are driven by the need to enhance human capabilities across various industries as well as the need to provide increased safety for the human worker. This review paper examines the sensors, actuators, mechanisms, design, and applications of passive and active exoskeletons, providing an in-depth analysis of various exoskeleton technologies. The main scope of this paper is to examine the recent developments in the exoskeleton developments and their applications in different fields and identify research opportunities in this field. The paper examines the exoskeletons used in various industries as well as research-level prototypes of both active and passive types. Further, it examines the commonly used sensors and actuators with their advantages and disadvantages applicable to different types of exoskeletons. Communication protocols used in different exoskeletons are also discussed with the challenges faced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.