Oil palm ash (OPA) is available in abundance, is renewable, can be obtained at no cost and shows good performance at high thermal conditions. Combinations of the unsaturated polyester with natural fillers have been reported to improve the mechanical and thermal properties of composites. Utilisation of oil palm ash as a filler in the manufacture of polymer composites can significantly reduce the requirement for other binders or matrixes of composite materials. This research uses oil palm ash as a filler to form composites through the investigation of the effect of different contents of filler on the properties of OPA-filled unsaturated polyester (UP/OPA) composites. The effect of different volume fractions, i.e., 0, 10, 20 and 30 vol.% of oil palm ash introduced into 100, 90, 80 and 70 vol.% of an unsaturated polyester matrix on the composite mechanical properties, i.e., tensile and flexural, has been studied, together with thermal gravimetric analysis (TGA) and differential scanning calorimetric (DSC). Specimens were prepared using compression moulding techniques based on the ASTM D790 and D5083 standards for flexural and tensile tests, respectively. The tensile and flexural mechanical properties of UP/OPA composites were improved in modulus by increasing the filler content. Thermal stability of the composites increased as the OPA filler content was increased, which was a logical consequence because of the high thermal stability of the silica compound of the OPA filler compared with that of the UP matrix. The results from the surface electron microscope (SEM) analysis were the extension of mechanical and thermal tests.
Demand for lighter and stiffer products has been increasing in the last few years especially in automobile manufacturing. The closed die forging process of Metal Matrix Material (MMC) is presented as possible solution, since it produces parts with good mechanical properties and lighter weight. A computational modeling of closed die forging process using finite element method and optimization techniques makes the design optimization faster and more efficient, decreasing the use of conventional trial and error methods. In this study, the application of commercial finite element software (ANSYS) has been used to model cold closed die forging process. The model has been developed using ANSYS Parametric Design Language (APDL) to simulate a single stage axisymmetry closed die forging process for H cross sectional shape. The material used is AlMgSi matrix with 15% SiC particles. Its flow curve and fractural strain are obtained from the literature. ANSYS Optimizer is used to obtain the maximum height in which the material can flow in the rib by changing Design Variables (DV) and State Variables (SV). Normally design variables are geometrical parameters such as, rib height to width ratio, web height to rib height ratio, fillet radii, draft angle and billet radius. State Variables (SV) are some parameters that depend on the design variables such as, the equivalent strain which must be below the fracture strain of the MMC material, and an acceptable contact gap (within the allowable tolerances range). Optimization method called Sub-Problem Approximation Method was used to find out the optimal design set. The technique used in this study can be used for newly developed materials to investigate its forgeability for much complicated shapes in closed die forging process.
A study was conducted with the objective of gathering the information through flexural (three-point bending) testing. This research presents the testing results concerning the mechanical properties, modulus of elasticity (MOE) and modulus of rupture (MOR) of natural fiber reinforced composite. Resin were used as a matrix and untreated wood fibres contents 14% by weight as a filler treatment parameters to obtain better compatibility involving wood fibres Sawdust (SW) and Chipwood (CW) and epoxy. The feasibility of processing the composite prepared manually from waste wood and epoxy using open molding was investigated. The tests that have been conducted are in according to ASTM (D790-97) for flexural properties test method. Statistical analysis using ANOVA one way and two way showed that the differences of results obtained from those SW and CW fiber composite samples are significant, which confirm a very firm mechanical performance of the composites through flexural tests. This shows the producing a good quality of SW and CW fibre composite which maybe can use for furniture utilities.
In this study, waste wood product obtained from the timber industry originating from various type of wood has been investigated. Research work carried out on the three different sizes of fiber derived from the sawdust (SW) and chip wood (CW). The SW and CW fiber and epoxy resin were blended together respectively using hand tools machine, all specimens of fiber composite were prepared accordance to the ASTM standards. Tensile and morphological properties provide an excellent measure of the degree of reinforcement provided by the fiber to the composite. The tensile modulus increased with the filler size from coast to rough of composites both SW and CW but decreases steadily with the wood–fiber size from rough to soft content. Statistical analysis using one way and two ways analysis of variances (ANOVA) showed that the differences of results obtained from those SW and CW fiber composite samples are significant, which confirm a very firm mechanical performance of the composites through tensile tests. This shows the producing a good quality of SW and CW fibres composite which maybe used for home furniture utilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.