For colloidal quantum-size particles (QP) of narrow-gap semiconductors, in contrast to quantum dots of wide-gap CdSe, in QP-PbS there take place an anomalous temperature dependence of the photoluminescence intensity. Also, in the planar microstructure containing QP-InSb, long-wavelength radiation (more than 3 μm) and photoconductivity (over 20 μm) was observed. Under certain conditions, the radiation intensity and photoconductivity demonstrate a resonance maximum. The effects were explained in the model of a one-dimensional quantum oscillator, which energy substantially depends on the effective mass of its quasi-free electron. This leads to competition between the manifestations of long-wave radiation and photoluminescence, and hence, to the anomalous temperature dependence of photoluminescence. It is assumed that QP-InSb in a planar microstructure can be sources and receivers of terahertz radiation, which properties depend on the crystal structure of quantum-sized particles determined by the parameters of their synthesis. Keywords: quantum-dimensional particle, quantum dot, narrow-gap semiconductor, effective mass, Brillouin zone, dimensional quantization, quantum oscillator, photoluminescence, long-wavelength radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.