Die messtechnische Strukturüberwachung von Brücken hat das Potenzial, sich langfristig als wichtiges ergänzendes Instrument zur kontinuierlichen Zustandsbewertung zu etablieren. Die jüngere Forschung auf diesem Gebiet setzt verstärkt auf Signalmerkmale unterschiedlicher Sensortypen sowie auf Methoden des maschinellen Lernens. Daran anknüpfend wird in diesem zweiteiligen Aufsatz erläutert, wie Bauwerksschäden mithilfe der Anomalieerkennung mit Modellen des maschinellen Lernens identifiziert werden können. Im Teil 1 wird ein Signalmerkmal vorgestellt, das auf Einflusslinien basiert: Die R-Signatur. Durch Simulationen kann gezeigt werden, dass die R-Signatur deutlich empfindlicher auf einen Bauwerksschaden reagiert als die betrachteten Eigenfrequenzen. In Teil 2 wird ein Verfahren zur Anomalieerkennung beschrieben, das Bauwerksschäden durch eine Veränderung der Korrelationsstruktur der R-Signatur identifiziert. Das zugrunde liegende Datenmodell nutzt dabei die Hauptkomponentenanalyse. Der vorgestellte Ansatz wurde mit den Messdaten einer Straßenbrücke verifiziert.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.