The early postnatal development of the A-layers of the dorsal lateral geniculate nucleus (LGNd) was investigated in kittens aged 0-34 days by immunohistochemistry for the selective marker for neuronal differentiation (NeuN protein) and parvalbumin. We report two new facts about the LGNd development. First, there is a transient stratification of NeuN labelling in layer A, and to a lesser extent in layer A1, in kittens aged 0 and 4 days. Second, a transient population of large cells that are located between the LGNd A-layers (interlaminar cells) showed high expression levels of both NeuN and parvalbumin. These neurons possessed both the morphological and immunohistochemical features, similar to cells in the neighbouring perigeniculate nucleus. Both NeuN-stratification and double-stained interlaminar cells gradually disappeared during the second postnatal week, and almost completely vanished by the opening of the critical period. We discuss a possible linkage between these observed transitory networks and the ON-/OFF- and X-/Y-cells development and propose that the data obtained reflect the functioning of the early environmentally independent geniculate networks.
CAS (Cell Annotation Software) is a novel tool for analysis of microscopic images and selection of the cell soma or nucleus, depending on the research objectives in medicine, biology, bioinformatics, etc. It replaces time-consuming and tiresome manual analysis of single images not only with automatic methods for object segmentation based on the Statistical Dominance Algorithm, but also semi-automatic tools for object selection within a marked region of interest. For each image, a broad set of object parameters is computed, including shape features and optical and topographic characteristics, thus giving additional insight into data. Our solution for cell detection and analysis has been verified by microscopic data and its application in the annotation of the lateral geniculate nucleus has been examined in a case study.
The thalamic reticular nucleus receives axons from the thalamic sensory nuclei and the cerebral cortex. The visual part of this nucleus in carnivores is the perigeniculate nucleus located dorsal to the lateral geniculate nucleus. The perigeniculate nucleus participates in the modulation of visual processing and in the transition of synchronized slow rhythmicity during sleep into desynchronized high-frequency activity during arousal and consists of inhibitory neurons. The main neurochemical markers for perigeniculate neurons are glutamic acid decarboxylase and Ca 2+ -binding protein parvalbumin. Previous studies of postnatal development focused on the morphological features of the perigeniculate nucleus; however, its neurochemistry remains poorly understood. In this study, we focused on the postnatal development of perigeniculate neurons using immunohistochemical labeling of parvalbumin, two related Ca 2+ -binding proteins (calretinin and calbindin), glutamic acid decarboxylase, and a common neuronal protein, NeuN, in kittens that were 0-123 days old and in adult cats. In parallel with the well-known dominant neuronal populations expressing parvalbumin and GAD67 and persisting until adulthood, transient populations expressing calretinin and calbindin were observed. The calbindin-positive neurons were similar to the main perigeniculate population and showed close morphological features and parvalbumin coexpression. In contrast, the calretinin-positive neurons differed in their morphological characteristics and did not express GAD67, thus distinguishing them from the majority of perigeniculate neurons. A possible link between these populations was revealed, and the development of thalamocortical processing is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.