Various heterogeneous catalysts are often used to produce biodiesel from non-edible crude oils. In this study a highly active heterogeneous calcium oxide (CaO) nanocatalyst with a diameter and surface area of 66 ± 3 nm and 90.61 m2/g, respectively, was synthesized from Polymedosa erosa (P. erosa) seashells through a calcination-hydration-dehydration technique. The nano-CaO catalysis impact was investigated in a two-step transesterification of triglycerides from crude Jatropha oil as a biodiesel along with other reaction parameters such as catalyst ratio, reaction time, and methanol to oil ratio. Fourier transform infrared spectroscopy, transmission electron microscope, X-ray diffraction, and Brunauer-Emmett-Teller spectrographic techniques were utilized to evaluate the CaO nanocatalyst spectral and structural characteristics. The effect of the transesterification parameters on reaction kinetics and Jatropha biodiesel (JB) yield were analyzed by employing a three-factor-five-level response surface methodology model based on a full factorial, two-block, central composite design. The adequacy of the predicted model was verified, and a 98.54% JB yield was reported at optimal parametric conditions, i.e., 0.02:1 (w/w) catalyst ratio, 133.1 min reaction time, and 5.15:1 mol/mol of methanol to the pretreated oil. An average of 95.8% JB yield was obtained from the catalyst reusability up to the sixth cycle. Fuel property test results of JB were found to be highly commensurate with the biodiesel standard EN 14214.
The application of nonedible feedstock for the production of biodiesel has become an area of research interest among clean energy experts in the past few years. This research is aimed at the utilization of Pongamia pinnata (karanja), a nonedible feedstock from the state of Sarawak, Malaysia, to produce biodiesel to be known as crude karanja oil (CKO). A one-step transesterification process utilizing 7 : 1-10 : 1 wt% methanol (CH 3 OH) and 0.5-1.2 wt% sodium hydroxide (NaOH) at 65 ∘ C for 1.5 hrs has been used for the biodiesel production yielding 84% conversion. The physiochemical properties of the CKO produced revealed that it conforms with EN14214 standards for brake power (BP), brake specific fuel consumption (BSFC), and brake thermal efficiency (BTE) as they are all noted be optimal at B40.
Biodiesel is one of the promising renewable sources to fulfill the future energy demand of the world. Sustainable feedstock for biodiesel production is one of the major criteria to ensure the process of renewability. Chicken fat is an encouraging feedstock for biodiesel. In this study, waste chicken fat was converted to biodiesel via catalysed transesterification. Optimised process parameters were recorded at 1:4 oil-to-methanol volume ratio and 0.5 wt% KOH catalyst concentration with a biodiesel yield of 96%. The FT-IR spectral analysis of chicken fat and chicken fat biodiesel confirmed the conversion of chicken fats into biodiesel. The physico-chemical properties of biodiesel were tested in accordance with ASTM D6751 and EN 14214 biodiesel standards. The specific fuel properties of chicken fat biodiesel that include calorific value, viscosity and acid value were found to be lower than that of petrodiesel. The diesel engine performance tests confirmed that the biodiesel blends performance was similar to petrodiesel. It is noted that while the brake horsepower increased with the increase of biodiesel blending percentage, the engine power output was found to decrease. Specific fuel consumption also increased along with the biodiesel blending percentage.
Abstract. Heterogeneous catalysts are often used at large to produce biodiesel from non-edible vegetable crude oils such as Jatropha curcas oil (JCO). In this study, an active heterogeneous CaO catalyst was synthesized from a tropical biodiversity seashells Anadara granosa (A.granosa). The catalytic efficiency of A.granosa CaO was investigated in transesterification of JCO as biodiesel. The A.granosa CaO catalyst was synthesized using 'Calcination -hydration -dehydration' protocol. The spectral characterization of the catalyst were investigated by employing FT-IR, SEM, BET and BJH spectrographic techniques. The experimental design was executed with four reaction parameters that include catalyst concentration (CC), methanol ratio (MR), transesterification time (TT) and reaction temperature (RT). The JCO transesterification reactions as well as impact of reaction parameters on the Jatropha biodiesel yield (JBY) were analyzed. The sufficiency of the experimental results conformed through sequential validation tests, as a result, an average of 96.2% JMY was noted at optimal parametric conditions, CC of 3wt. %, TT of 120 min, MR of 5 mol. and RT of 60ºC at a constant agitation speed of 300rpm. An average JMY of 87.6% was resulted from the A.granosa CaO catalyst during their recycling and reuse studies up to third reuse cycle.
Calcium based catalysts have been studied as promising heterogeneous catalysts for production of methyl esters via transesterification; however a few were explored on catalyst synthesis with high surface area, less particle size, and Ca leaching analysis. In this work, an active Razor shell CaO with crystalline size of 87.2 nm, BET of 92.63 m 2 /g, pore diameters of 37.311 nm, and pore volume of 0.613 cc/g was synthesized by a green technique "calcination-hydro aeration-dehydration." Spectrographic techniques TGA/DTA, FTIR, SEM, XRD, BET&BJH, and PSA were employed for characterization and surface morphology of CaO. Two-step transesterification of Jatropha curcas oil was performed to evaluate CaO catalytic activity. A five-factor-five-level, two-block, half factorial, central composite design based response surface method was employed for experimental analysis and optimization of Jatropha methyl ester (JME) yield. The regression model adequacy ascertained thru coefficient of determination ( 2 : 95.81%). A JME yield of 98.80% was noted at (3.10 wt.%), (54.24 mol./mol.%), (127.87 min), (51.31 ∘ C), and (612 rpm). The amount of Ca leached to JME during 1st and 4th reuse cycles was 1.43 ppm ± 0.11 and 4.25 ppm ± 0.21, respectively. Higher leaching of Ca, 6.67 ppm ± 1.09, was found from the 5th reuse cycle due to higher dispersion of Ca 2+ ; consequently JME yield reduces to 76.40%. The JME fuel properties were studied according to biodiesel standards EN 14214 and comply to use as green biodiesel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.