Features of the phonon spectrum of a chiral crystal are examined within the micropolar elasticity theory. This formalism accounts for not only translational micromotions of a medium but also rotational ones. It is found that there appears the phonon band splitting depending on the left-and right-circular polarization in a purely phonon sector without invoking any outside subsystem. The phonon spectrum reveals parity breaking while preserving time-reversal symmetry, i.e., it possesses true chirality. We find that hybridization of the microrotational and translational modes gives rise to the acoustic phonon branch with a "roton" minimum reminiscent of the elementary excitations in the superfluid helium-4. We argue that a mechanism of this phenomena is in line with Nozières' reinterpretation P. Nozières, [J. Low Temp. Phys. 137, 45 (2004)] of the rotons as a manifestation of an incipient crystallization instability. We discuss a close analogy between the translational and rotational micromotions in the micropolar elastic medium and the Bogoliubov quasiparticles and gapful density fluctuations in 4 He.
We study magnetoelastic resonance phenomena in a mono-axial chiral helimagnet belonging to hexagonal crystal class. By computing the spectrum of coupled elastic wave and spin wave, it is demonstrated how hybridization occurs depending on their chirality. Specific features of the magnetoelastic resonance are discussed for the conical phase and the soliton lattice phase stabilized in the mono-axial chiral helimagnet. The former phase exhibits appreciable non-reciprocity of the spectrum, the latter is characterized by a multi-resonance behavior. We propose that the nonreciprocal spin wave around the forced-ferromagnetic state has potential capability to convert the linearly polarized elastic wave to circularly polarized one with the chirality opposite to the spin wave chirality.
We consider the case of a chiral soliton lattice subjected to uniaxial elastic strain applied perpendicular to the chiral axis and derive through analytical modelling the phase diagram of magnetic states supported in the presence of an external magnetic field. The strain induced anisotropies give rise to three distinct non-trivial spin textures, depending on the nature of the strain, and we show how these states may be identified by their signatures in Lorentz transmission electron microscopy (TEM). Experimental TEM measurements of the Fresnel contrast in a strained sample of the prototypical monoaxial chrial helimagnet CrNb 3 S 6 are reported and compare well with the modelled contrast. Our results demonstrate an additional degree of freedom that may be used to tailor the magnetic properties of helimagnets for fundamental research and applications in the areas of spintronics and the emerging field of strain manipulated spintronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.