For over ten years, arrays of interacting single-domain nanomagnets, referred to as artificial spin ices, have been engineered with the aim to study frustration in model spin systems.Here, we use Fresnel imaging to study the reversal process in 'pinwheel' artificial spin ice, a modified square ASI structure obtained by rotating each island by some angle about its midpoint. Our results demonstrate that a simple 45 • rotation changes the magnetic ordering from antiferromagnetic to ferromagnetic, creating a superferromagnet which exhibits mesoscopic domain growth mediated by domain wall nucleation and coherent domain propagation. We observe several domain-wall configurations, most of which are direct analogues to those seen in continuous ferromagnetic films. However, novel charged walls also appear due to the geometric constraints of the system. Changing the orientation of the external magnetic field allows control of the nature of the spin reversal with the emergence of either 1-D or 2-D avalanches. This unique property of pinwheel ASI could be employed to tune devices based on magnetotransport phenomena such as Hall circuits.Artificial spin ice (ASI) systems have been used not only as a route to new physical phenomena, but also to gain insight into fundamental physics. Such capabilities are only possible because these structures are able to emulate the behaviour of assemblies of the individual spins in atomic 1 arXiv:1808.10490v1 [cond-mat.dis-nn]
Nanoscale modifications of strain and magnetic anisotropy can open pathways to engineering magnetic domains for device applications. A periodic magnetic domain structure can be stabilized in sub-200 nm wide linear as well as curved magnets, embedded within a flat non-ferromagnetic thin film. The nanomagnets are produced within a non-ferromagnetic B2-ordered Fe 60 Al 40 thin film, where local irradiation by a focused ion beam causes the formation of disordered and strongly ferromagnetic regions of A2 Fe 60 Al 40 .An anisotropic lattice relaxation is observed, such that the in-plane lattice parameter is larger when measured parallel to the magnet short-axis as compared to its length. This in-plane structural anisotropy manifests a magnetic anisotropy contribution, generating an easy-axis parallel to the short axis. The competing effect of the strain and shape anisotropies stabilizes a periodic domain pattern in linear as well as spiral nanomagnets, providing a versatile and geometrically controllable path to engineering the strain and thereby the magnetic anisotropy at the nanoscale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.