The enantiomeric separation of some nonsteroidal anti-inflammatory drugs (NSAIDs) was investigated in capillary electrophoresis (CE) using dual systems with mixtures of charged cyclodextrin (CD) derivatives. A significant enhancement of selectivity and resolution could be achieved in the enantioseparation of these analytes in their uncharged form by the simultaneous addition of two oppositely charged CD derivatives to the background electrolyte. The combination of the single-isomer cationic CD, permethyl-6-monoamino-6-monodeoxy-beta-CD (PMMAbetaCD) and the single-isomer polyanionic CD, heptakis-6-sulfato-beta-cyclodextrin (HSbetaCD) in a pH 2.5 phosphoric acid-triethanolamine buffer, was designed and employed for the enantioseparation of profens. The improvement in selectivity and resolution can be attributed to the fact that the two CDs, which lead to independent and enantioselective complexation with the analyte enantiomers, have not only opposite effects on the electrophoretic mobility of these compounds but also opposite affinity patterns towards the enantiomers of these compounds. Binding constants for these enantiomers with each CD were determined using linear regression approach, in order to be able to predict the effect of the concentrations of the two CDs on enantiomeric selectivity and resolution in such dual systems.
The enantiomeric separation of various kinds of basic pharmaceuticals has been investigated in nonaqueous capillary electrophoresis (NACE) systems using an ion-pairing reagent in combination with cyclodextrins (CDs). The simultaneous addition to the methanolic background electrolyte (BGE) of (+)-S-camphorsulfonate or alkanesulfonates and an anionic beta-cyclodextrin derivative, heptakis(2,3-dimethyl-6-sulfato)-beta-cyclodextrin (HDMS-beta-CD), led to partial or complete enantioresolution in most cases. In the absence of ion-pairing reagent, the enantiomeric resolution obtained with this CD derivative was most often completely lost or strongly reduced, indicating the important role of ion-pairing in the chiral recognition mechanism in these NACE systems. The influence of the nature and concentration of the counterion and the anionic CD derivative on the enantioseparation of basic compounds was studied. Synergistic effects between these two kinds of charged additives were clearly observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.