In vitro air-liquid interface (ALI) cell culture models can potentially be used to assess inhalation toxicology endpoints and are usually considered, in terms of relevancy, between classic (i.e., submerged) in vitro models and animal-based models. In some situations that need to be clearly defined, ALI methods may represent a complement or an alternative option to in vivo experimentations or classic in vitro methods. However, it is clear that many different approaches exist and that only very limited validation studies have been carried out to date. This means comparison of data from different methods is difficult and available methods are currently not suitable for use in regulatory assessments. This is despite inhalation toxicology being a priority area for many governmental organizations. In this setting, a 1-day workshop on ALI in vitro models for respiratory toxicology research was organized in Paris in March 2016 to assess the situation and to discuss what might be possible in terms of validation studies. The workshop was attended by major parties in Europe and brought together more than 60 representatives from various academic, commercial, and regulatory organizations. Following plenary, oral, and poster presentations, an expert panel was convened to lead a discussion on possible approaches to validation studies for ALI inhalation models. A series of recommendations were made and the outcomes of the workshop are reported.
A case-control study of hematological malignancies was conducted among Chernobyl liquidators (accident recovery workers) from Belarus, Russia and Baltic countries in order to assess the effect of low-to-medium dose protracted radiation exposures on the relative risk of these diseases. The study was nested within cohorts of liquidators who had worked in 1986–87 around the Chernobyl plant. 117 cases (69 leukemia, 34 non-Hodgkin Lymphoma (NHL) and 14 other malignancies of lymphoid and hematopoietic tissue) and 481 matched controls were included in the study. Individual dose to the bone marrow and uncertainties were estimated for each subject. The main analyses were restricted to 70 cases (40 leukemia, 20 NHL and 10 other) and their 287 matched controls with reliable information on work in the Chernobyl area. Most subjects received very low doses (median 13 mGy). For all diagnoses combined, a significantly elevated OR was seen at doses of 200 mGy and above. The Excess Relative Risk (ERR) per 100 mGy was 0.60 (90% confidence interval (CI): −0.02, 2.35). The corresponding estimate for leukemia excluding chronic lymphoid leukemia (CLL) was 0.50 (90%CI −0.38, 5.7). It is slightly higher than, but statistically compatible with, those estimated from a-bomb survivors and recent low dose-rate studies. Although sensitivity analyses showed generally similar results, we cannot rule out the possibility that biases and uncertainties could have led to over or underestimation of the risk in this study.
Although the lifetable methodology is a standard tool in epidemiology and risk assessment, there are a number of differences in the way it has been applied by various advisory committees that have attempted to estimate radiation risks. The most fundamental of these differences concerns the choice of parameter to be estimated: the "excess lifetime risk" is the difference in lifetime risks between exposed and unexposed populations; the "risk of exposure-induced death" is the lifetime risk of dying of a disease attributable to exposure. These two quantities are not the same, even at low doses. Although both quantities have some utility in risk assessment, the "risk of exposure-induced death" comes closer to capturing the total impact of exposure. Other differences between reported risk estimates include details of the calculations, the baseline rates and age distributions of the exposed population, the forms of the models for excess rates, handling of organ-specific doses, and the groupings of cancer sites. These issues are discussed theoretically and illustrated with comparisons of the BEIR V and UNSCEAR reports. Although the risk estimates from these two reports are similar for most cancer sites, it is shown that this happens to be the result of an approximate cancellation of a number of differences that could be quite large.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.