We consider a macroscopic traffic flow model tagged on a closure nonlinear density-velocity relationship yielding a quasi-linear first order (hyperbolic) partial differential equation (PDE) as an initial boundary value problem (IBVP). We present the analytic solution of the PDE which is in implicit form. We describe the derivation of a finite difference scheme of the IBVP which is a first order explicit upwind difference scheme. We establish the well-posed-ness and stability condition of the finite difference scheme. To implement the numerical scheme we develop computer program using MATLAB programming language in order to verify some qualitative behaviors for various traffic parameters. DOI: http://dx.doi.org/10.3329/bjsir.v47i3.13070 Bangladesh J. Sci. Ind. Res. 47(3), 339-346 2012
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.