A mathematical macroscopic traffic flow model known as Lighthill, Whitham and Richards(LWR) model appended with a closure nonlinear velocity-density relationship yielding a quasilinearfirst order (hyperbolic) partial differential equation as an initial boundary value problem(IBVP) was considered. The traffic model IBVP by finite difference method which leads to a firstorder explicit upwind difference scheme was discretized. Computer programs for theimplementation of the numerical scheme and perform numerical experiments in order to verifysome qualitative traffic flow behaviour for various traffic parameters were developed.Key words: Numerical simulation; Traffic flow model; Nonlinear velocity; Density functionDOI: 10.3329/jbas.v34i1.5488Journal of Bangladesh Academy of Sciences, Vol.34, No.1, 15-22, 2010
A fluid dynamic traffic flow model with a linear velocity-density closure relation is considered. The model reads as a quasi-linear first order hyperbolic partial differential equation (PDE) and in order to incorporate initial and boundary data the PDE is treated as an initial boundary value problem (IBVP). The derivation of a first order explicit finite difference scheme of the IBVP for two-point boundary condition is presented which is analogous to the well known Lax-Friedrichs scheme. The Lax-Friedrichs scheme for our model is not straight-forward to implement and one needs to employ a simultaneous physical constraint and stability condition. Therefore, a mathematical analysis is presented in order to establish the physical constraint and stability condition of the scheme. The finite difference scheme is implemented and the graphical presentation of numerical features of error estimation and rate of convergence is produced. Numerical simulation results verify some well understood qualitative behavior of traffic flow.DOI: http://dx.doi.org/10.3329/ganit.v31i0.10307GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 31 (2011) 43-52
The paper studies stability analysis for two standard finite difference schemes FTBSCS (forward time backward space and centered space) and FTCS (forward time and centered space). One-dimensional advection diffusion equation is solved by using the schemes with appropriate initial and boundary conditions. Numerical experiments are performed to verify the stability results obtained in this study. It is found that FTCS scheme gives better point-wise solutions than FTBSCS in terms of time step selection.
We consider a macroscopic traffic flow model tagged on a closure nonlinear density-velocity relationship yielding a quasi-linear first order (hyperbolic) partial differential equation (PDE) as an initial boundary value problem (IBVP). We present the analytic solution of the PDE which is in implicit form. We describe the derivation of a finite difference scheme of the IBVP which is a first order explicit upwind difference scheme. We establish the well-posed-ness and stability condition of the finite difference scheme. To implement the numerical scheme we develop computer program using MATLAB programming language in order to verify some qualitative behaviors for various traffic parameters. DOI: http://dx.doi.org/10.3329/bjsir.v47i3.13070 Bangladesh J. Sci. Ind. Res. 47(3), 339-346 2012
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.