Plasma Transferred Arc (PTA) process is increasingly used in applications where enhancement of wear, corrosion and heat resistance of metals surface is required. The shape of weld bead geometry affected by the PTA welding process parameters is an indication of the quality of the weld. PTA is a versatile method of depositing high-quality metallurgically fused deposits on relatively low cost surfaces. The overlay deposited is an alloy that is hard and more corrosion resistant than counterparts laid down by Gas Tungsten Arc Welding (GTAW) or Oxy Fuel Welding (OFW) processes. Weld deposits are characterized by very low levels of inclusions, oxides, and discontinuities. This process produces smooth deposits that significantly reduce the amount of post weld machining required. Metal-Mechanic industry continuously requires recovering tool steel components subjected to severe wear. The steel known as D2 is considered to be a high carbon, high chromium cold work tool steel. In this research, weld beads were deposited on D2 steel by using PTA process with different parameters as welding current and travel speed using base nickel filler metal. In order to evaluate the metallurgical features on the weld beads/substrate interface a microstructural characterization was performed by using Scanning Electron Microscopy (SEM) and to evaluate the mechanical properties was conducted the wear test.
In this research it was experimentally analyzed the effect of the parameters of the Pulsed Micro Laser Welding Process Nd:YAG on the microstructural behavior of a nickel base superalloy (IN-738). For this purpose, different laser welding tests were performed on samples subjected to different heat treatment conditions obtained from the gas turbine blades. The influence of the power and the speed welding of the applied process and heat treatment condition on the weld geometry, microstructure and mechanical properties was determined. The microstructures of the obtained welds were characterized by scanning electron microscopy and Vickers hardness tests. In general, alternatives to homogenize and rejuvenate the microstructure of the base material are proposed in order to avoid the formation and propagation of cracks. The results are discussed mainly in terms of the present phases and decomposition of carbides, which considerably affect the weldability of the IN-738 superalloy. This study provides useful information for the subsequent restoration of the 2nd step turbine blades by using of the Laser Welding Process Nd:YAG.
Among the different surface treatments used to improve the wear resistance of metallic materials, plasma transferred arc (PTA) is an attractive alternative to conventional techniques due to the intrinsic properties of its higher deposition rate, lower heat input and especially for the wide applicability of materials. The wide range of materials makes it possible to produce metallurgical bonding between the hardfacing layer and substrate material with very low dilution and distortion. Weld deposits are characterized by less level of inclusions, oxides, discontinuities and wear resistance. Metal-mechanic industry continuously requires recovering tool steel components subjected to severe wear. In this research Fe-based filler metal was deposited on D2 steel by using plasma transferred arc (PTA) process. The influence of Cr and Nb on Fe-based filler metal microstructure was investigated using scanning electron microscopy (SEM). In order to evaluate the mechanical properties were performed wear and hardness tests. The wear resistance and hardness values were compared with the results of a weld bead using nickel-based filler metal.
At present, the industrial sector requires the recovery of tool steel components subjected to severe wear which are built with steel HWS these have the same properties in all tribology directions and have great success in building tooling. In this paper, we recover the previously HWS steel machining with a fillet of 2mm caused by the metallurgical recovery of the component, applying the process of plasma transferred arc PTA which has very good fats dilution properties in comparison to other conventional processes currently applied for the recovery of tooling, such as GTAW, SMAW, SAW. The experiment was conducted with input D2 and M2 with one and two welding seams, making the assessment metallography, hardness and wear tests pin-on-disk. Finding a decrease in the hardness of the interface line, according to the evaluation of wear pin-on-disk, had a higher wear rate of the filler metal in the M2 D2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.