Random coincidences of events could be one of the main sources of background in the search for neutrino-less double-beta decay of $$^{100}$$ 100 Mo with macro-bolometers, due to their modest time resolution. Scintillating bolometers as those based on Li$$_2$$ 2 MoO$$_4$$ 4 crystals and employed in the CROSS and CUPID experiments can eventually exploit the coincident fast signal detected in a light detector to reduce this background. However, the scintillation provides a modest signal-to-noise ratio, making difficult a pile-up pulse-shape recognition and rejection at timescales shorter than a few ms. Neganov–Trofimov–Luke assisted light detectors (NTL-LDs) offer the possibility to effectively increase the signal-to-noise ratio, preserving a fast time-response, and enhance the capability of pile-up rejection via pulse shape analysis. In this article we present: (a) an experimental work performed with a Li$$_2$$ 2 MoO$$_4$$ 4 scintillating bolometer, studied in the framework of the CROSS experiment, and utilizing a NTL-LD; (b) a simulation method to reproduce, synthetically, randomly coincident two-neutrino double-beta decay events; (c) a new analysis method based on a pulse-shape discrimination algorithm capable of providing high pile-up rejection efficiencies. We finally show how the NTL-LDs offer a balanced solution between performance and complexity to reach background index $$\sim $$ ∼ $$10^{-4}$$ 10 - 4 counts/keV/kg/year with 280 g Li$$_2$$ 2 MoO$$_4$$ 4 ($$^{100}$$ 100 Mo enriched) bolometers at 3034 keV, the Q$$_{\beta \beta }$$ β β of the double-beta decay, and target the goal of a next generation experiment like CUPID.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.