Background This study was conducted to investigate the optimum dietary level of tryptophan (Trp) supplementation at which broiler chickens have better growth with efficient immune system and anti‐oxidant status. Method One hundred and twenty (n = 120) 1‐day‐old broiler chicks were fed a common commercial diet from days 1 to 7. On day 7, the chicks were randomly divided in three treatment groups, that is, Trp 0.2 [national research council (NRC) recommended level of tryptophan], Trp 0.3 (tryptophan supplemented at 0.3%) and Trp 0.5 (tryptophan supplemented at 0.5%). All the experimental diets were iso‐caloric (ME; 3,000 kcal/kg) and iso‐proteic (CP; 18.5%). Weekly data on feed intake and body weight gain (BWG) were recorded to calculate feed conversion ratio (FCR). On day 19, avian tuberculin was injected to note the cellular immunity. On day 21, two birds per replicate were killed to determine carcass and visceral organ weights. Blood serum samples were collected for analysis of humoral immune response against sheep red blood cells, total oxidant and anti‐oxidants by spectrophotometric method. Results Feed intake, carcass and visceral organ weights remained unaffected by dietary treatments while BWG and FCR tended to improve (p < .05) in broiler chicks fed the Trp 0.3 and the Trp 0.5 diets. Total oxidant status was also improved (p < .05) in broiler chicks fed the Trp 0.5 diet. Likewise, broiler chicks fed the Trp 0.3 and the Trp 0.5 diets tended to have better (p < .05) total anti‐oxidant status, catalase, glutathione peroxidase, glutathione reductase and arylesterase (ARE). The overall antibodies response and IgG improved (p < .05) by the Trp 0.3 and Trp 0.5 diets compared to control. However, IgM level remained similar across the treatment. The cellular immunity against avian tuberculin improved at 24 hr post‐injection but its effect disappeared at 48 hr. Conclusion The results of present study revealed that Trp above the NRC recommended level may give better growth, immune response and anti‐oxidant status in broiler chickens.
Wheat is highly self-pollinated crop and main staple food of the world. Yield is one of the main breeding objectives in the wheat crop. Plant breeders are focusing on the development of new lines with increased yield, resistant against biotic and abiotic factors and having more nutritional values. The goal of the current research was to identify acceptable crossings for further investigation by determining the type of gene action (genetic effects) and combining ability of parental genotypes for morphological features. This approach was used to evaluate three lines, namely Ujala-2016, Johar-2016, Galaxy-2013 and four testers’ viz. XJ22, XJ23, XJ24 and XJ25. Collected data were subjected to line × tester analysis. Among parents as lines genotype Johar-2016 found good general combiner for studied traits. While among testers XJ25 proved to be the best general combiner for studied traits. Similarly, cross combinations hybrid XJ25 × Galaxy-2013 performed best as specific combiner. It was noticed that SCA variance was greater than GCA variance for all factors studied in wheat except for grains/spike. The superior genotypes and crosses can be further tested in yield for development of improved wheat varieties.
Heat stress has emerged as a chief problem impeding wheat crop productivity. In several crops, specific HSP90A genes have intensively managed induced fluctuations in temperature. A wheat plant with TaHSP90A transcripts had the potential to cope with temperature stress. It enables plants to survive in transient extremes of temperature and under heat stress. The presented study design enhanced temperature tolerance plasticity with high yield in wheat through a line × tester mating design containing lines (12) and testers (4) having a differential expression of TaHSP90A transcripts (TraesCS2A02G033700.1, TraesCS5B02G258900.3, and TraesCS5D02G268000.2), then hybridized to get the F1 (48) wheat hybrids. For heat treatment, temperature raising was only in the daytime, through the tunnel at anthesis (for two weeks). Data recording for several morphological and physiological parameters went along with the relative expression of TaHSP90A transcripts for hybrid evaluation. After one hour of heat treatment, the relative expression of TaHSP90A transcripts’ determination in the flag leaf followed. The manifestation of TaHSP90A transcripts’ upregulation was two folds in several hybrids after heat treatment. Best lines, testers, and selected crosses having TaHSP90A transcripts with high yield and heat tolerance compared with parents can further benefit breeding programs aiming toward tolerance against heat stress in changing climate scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.