The interior structure of Saturn, the depth of its winds, and the mass and age of its rings constrain its formation and evolution. In the final phase of the Cassini mission, the spacecraft dived between the planet and its innermost ring, at altitudes of 2600 to 3900 kilometers above the cloud tops. During six of these crossings, a radio link with Earth was monitored to determine the gravitational field of the planet and the mass of its rings. We find that Saturn’s gravity deviates from theoretical expectations and requires differential rotation of the atmosphere extending to a depth of at least 9000 kilometers. The total mass of the rings is (1.54 ± 0.49) × 1019 kilograms (0.41 ± 0.13 times that of the moon Mimas), indicating that the rings may have formed 107 to 108 years ago.
[1] Nineteen new radio occultations of the ionosphere of Saturn have been obtained since 2006. Sixteen of these occultations were from midlatitude and high latitudes and thus provided important, new information of the ionosphere for these regions. A high degree of variability in the electron densities were observed, but grouping and averaging the observations as low-, middle-, and high-latitude ones clearly showed that the electron densities increase with latitude. The topside scale heights also indicate small increases with latitude, but these changes are small enough so these increases may not be statistically significant.
[1] The first set of near-equatorial occultations of the Saturn ionosphere was obtained by the Cassini spacecraft between May and September of 2005. The occultations occurred at near-equatorial latitudes, between 10°N and 10°S, at solar zenith angles from about 84°to 96°. The entry observations correspond to dusk conditions and the exit ones to dawn. An initial look at the data indicates that the average peak densities are lower and the peak altitude higher at dawn than at dusk, possibly the result of ionospheric decay during the night hours. There are also significant differences between individual dawn and dusk occultations; the initial thought is that this variation must be connected to changes in the water inflow into the upper atmosphere and/or variations in the particle impact ionization rates.
[1] An ionosphere has been detected at Callisto by the Galileo spacecraft, using the radio occultation technique. There were four usable occultations by Callisto, providing eight observation opportunities, all equatorial and near the terminator (entry and exit observations). Detectable electron densities were obtained from six of the eight opportunities. It was found that a detectable ionosphere was only present at the observed location when the trailing hemisphere of Callisto, which is the one that is impacted by the corotating plasma of Jupiter's magnetosphere, was illuminated by the Sun. Two of these observations yielded well-defined electron density profiles, having peak densities of 15,300 and 17,400 cm À3 at altitudes of 27.2 and 47.6 km and topside plasma scale heights of 29.6 and 49.0 km. Four different methods, based on both photoionization and electron impact ionization, were used to obtain estimates of the corresponding neutral densities at the surface. The various assumptions inherent in these methods required using a variety of parameters, (cross sections, rate constants, etc.) all with their associated uncertainties. It was rather surprising and reassuring to find that all of the methods used to estimate the surface neutral density gave very similar results in each of the eight cases.The estimated values fall between 1 and 3 Â 10 10 cm À3 , leading to an estimate for the column density of from 3 to 4 Â 10 16 cm À2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.