Understanding radiation performance of nanocrystalline Zr-based alloys is essential to develop internal components and external cladding materials with self-healing capabilities for longer and safer life cycles in harsh reactor environments. However, the precise role of interfaces in modifying defect production and evolution in α-Zr is not yet determined. Using atomistic simulation methods, we investigate the influence of different atomic grain boundaries (GBs) in thermodynamic and kinetic properties of defects on short timescales. We observe that the sink efficiency and sink strength of interfaces vary significantly with the boundary structures, with a preference to absorb interstitials (vacancies) when the GBs are semi-parallel (semi-perpendicular) relative to the basal planes. Further, we identify three distinct primary cascade geometries, and find that the residual defect clustering in grain interiors depends on how the atomic GBs modify the spatial distribution of defects within the crystal structure. Finally, we explain and discuss the dynamic results in terms of energetic and kinetic behaviors of defects near the pristine and damaged boundaries. Eventually, these will provide a microscopic reference for further improving the radiation response of Zr by using fine grains or by introducing a high density of dispersoids in material metallurgy.
In this paper, we investigate the influence of Cr on the primary radiation damage in Fe-12 at.% Cr with different atomic grain boundaries (GBs). Four different GB structures, two twists and two symmetric tilt boundaries are selected as the model structures. The primary radiation damage near each GB in α-Fe and Fe-12 at.% Cr is simulated using Molecular Dynamics for 9 keV primary knock-on atoms with velocity vectors perpendicular to the GB plane. In agreement with previous works, the results indicate that the atomic GBs are biased toward interstitials and due to the reduction of ‘in-cascade’ interstitial-vacancy annihilation rates, vacancies accumulate in the bulk grains. The minimum defect production occurs when the overlap between cascade center and GB plane is maximum; in contrast, the number of residual defects in the bulk (vacancies and interstitials) increases when the overlap decreases. Moreover, we find that the presence of Cr hardly affects the number of residual defects in the grain interiors, and causes a Cr-enrichment in the surviving self-interstitial atoms in bulk during relaxation of the primary cascades—also in agreement with previous studies. Further, in order to study the effect of 12 at.% Cr on the energetic and kinetic properties of vacancies near the atomic GBs, we calculate formation energies and diffusion barriers of defects using Molecular Static and climbing-Nudged Elastic Band methods. The results reveal that the vacancies energetically and kinetically tend to form and cluster around the GB plane due to the substantial reduction of their formation energies and migration barriers in layers close to the GB center and are immobile on the simulated time frame (~ps).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.