The chromosomal passenger complex (CPC) is a key regulator of chromosome segregation and cytokinesis. CPC functions are connected to its localization. The complex first localizes to centromeres and later associates with the central spindle and midbody. Survivin, Borealin, and INCENP are the three components of the CPC that regulate the activity and localization of its enzymatic component, the kinase Aurora B. We determined the 1.4 A resolution crystal structure of the regulatory core of the CPC, revealing that Borealin and INCENP associate with the helical domain of Survivin to form a tight three-helical bundle. We used siRNA rescue experiments with structure-based mutants to explore the requirements for CPC localization. We show that the intertwined structural interactions of the core components lead to functional interdependence. Association of the core "passenger" proteins creates a single structural unit, whose composite molecular surface presents conserved residues essential for central spindle and midbody localization.
Ska1 and Ska2 form a complex at the kinetochore-microtubule (KT-MT) interface and are required for timely progression from metaphase to anaphase. Here, we use mass spectrometry to search for additional components of the Ska complex. We identify C13Orf3 (now termed Ska3) as a novel member of this complex and map the interaction domains among the three known components. Ska3 displays similar characteristics as Ska1 and Ska2: it localizes to the spindle and KT throughout mitosis and its depletion markedly delays anaphase transition. Interestingly, a more complete removal of the Ska complex by concomitant depletion of Ska1 and Ska3 results in a chromosome congression failure followed by cell death. This severe phenotype reflects a destabilization of KT-MT interactions, as demonstrated by reduced cold stability of KT fibres. Yet, the depletion of the Ska complex only marginally impairs KT localization of the KMN network responsible for MT attachment. We propose that the Ska complex functionally complements the KMN, providing an additional layer of stability to KT-MT attachment and possibly signalling completion of attachment to the spindle checkpoint.
The Ska complex is an essential mitotic component required for accurate cell division in human cells. It is composed of three subunits that function together to establish stable kinetochore-microtubule interactions in concert with the Ndc80 network. We show that the structure of the Ska core complex is a W-shaped dimer of coiled coils, formed by intertwined interactions between Ska1, Ska2, and Ska3. The C-terminal domains of Ska1 and Ska3 protrude at each end of the homodimer, bind microtubules in vitro when connected to the central core, and are essential in vivo. Mutations disrupting the central coiled coil or the dimerization interface result in chromosome congression failure followed by cell death. The Ska complex is thus endowed with bipartite and cooperative tubulin-binding properties at the ends of a 350 Å-long molecule. We discuss how this symmetric architecture might complement and stabilize the Ndc80-microtubule attachments with analogies to the yeast Dam1/DASH complex.
Aurora B phosphorylation antagonizes the interaction between the Ska complex and the KMN network, thereby controlling Ska recruitment to kinetochores and stabilization of kinetochore–microtubule attachments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.