Food security is one of the most important challenges facing human kind. A very promising approach to solve the problem is closing the yield gap, i.e. the difference between farmer's and potential yield. A 'complete yield gap assessment method' must provide information regarding potential yield, actual yield and yield gap, the causes of the gap and their importance. The objective of this study was to indicate how boundary line analysis (BLA) could be applied to such an assessment. BLA was only applied to crop management practices/inputs, e.g. sowing date and rate and fertilizer applications. The data were gathered from about 700 wheat farms in Golestan province, one of the major wheat producing regions in Iran, during two growing seasons of 2013-2014 and 2014-2015. Wheat production in Golestan province can be divided into three production situations according to agro-and geo-climatology criteria: these are 'irrigated or high-rainfall', 'high-yield rainfed', and 'low-yield rainfed'. Boundary lines were fitted to the edge of the data cloud of crop yield versus management variables using data from each of the three wheat production situations in the province. Actual farmers' yields were 3900 kg ha-1 for irrigated, 4000 kg ha-1 for high-yield rainfed and 2000 kg ha-1 for low-yield-rainfed situations; BLA indicated that potential yields (the highest yields obtained by farmers in the sample) were 6900, 5800 and 3900 kg ha −1 for each situation, respectively. The corresponding yield gaps were high at 42%, 31% and 50%. Using BLA it was possible to determine the optimal sowing date, seeding rate, frequency and amount of nitrogen fertilizer applied, amount of nitrogen top-dressing, amount of phosphorus and potassium fertilizers and irrigation frequency. The percentage of farmers who cultivated outside of the optimal levels was also identified and was used to determine the importance of each management factor in yield gap. It was concluded that BLA as applied in the study, was a cheap and simple method which, without the need for expensive experimentation, was able to detect yield gaps and their causes in a region. The method can be used effectively in countries/regions where important yield gaps exist.
Pre-anthesis stored nitrogen in wheat (Triticum aestivum L.) is important because grain filling greatly depends on the remobilization of pre-anthesis nitrogen under Mediterranean growth conditions. This field study was conducted to assess the effect of post-anthesis water deficit and three N fertilizer levels on N remobilization and N losses in three wheat cultivars ('Shiraz', 'Marvdasht' and 'Chamran'). Nitrogen remobilization in plant parts decreased to 29 to 58% under water deficit compared with the well watered (WW) treatment. Grain N was 40% higher under post-anthesis water deficit than the WW treatment and with the addition of 160 kg N ha-1. The application of nitrogen fertilizer increased N remobilization to 78%. 'Shiraz' remobilized 13 and 25% more nitrogen than 'Marvdasht' and 'Chamran', respectively. Under water deficit, N remobilization efficiency increased by 13%. Leaves were more efficient than stem and spike in N remobilization efficiency either in the WW or the WD treatment. The application of fertilizer N generally lowered whole plant remobilization efficiency. The N remobilization efficiency of 'Chamran' increased when the soil moisture and/or N were limited during the grain filling period. Grain N concentration was correlated positively with N concentration or N content of vegetative parts at anthesis. In addition to nitrogen fertilizer, WD during grain filling reduced nitrogen use efficiency by 30 and 25%, respectively. In the WW treatment, 25% of the N at anthesis was lost at maturity. In contrast, under WD only 6% of the N was lost. High amount of N led to N losses at maturity. Significant negative correlations were found between grain yield and grain protein concentration in the three wheat cultivars. Results indicate that the greater the amount of N accumulated before anthesis, the higher the translocation rates of nitrogen to grain and the greater the risk of net N losses at maturity.
IntroductionSoil organic carbon (SOC) dynamic is one of the important factors that directly influence soil properties and quality. In agro-ecosystems, the SOC dynamics are strongly linked to agricultural management practices.MethodsIn this study, we investigated the response of SOC and its fractions to various combination of agricultural management practices based on measurements obtained from an experiment conducted over four growing seasons from 2018 to 2020 in Ahvaz, Iran. The experimental treatments involved three agricultural strategies combined with four crop rotation systems. The agricultural strategies comprised conventional (CON: mineral fertilizer, removal of all crop residues), organic (ORG: organic fertilizer, 30% return of crop residues to the soil), and integrated (INT: mineral/organic fertilizer, 15% return of crop residues) strategies. The crop rotation systems were: fallow-wheat (F-W), corn-wheat (C-W), sesame-wheat (S-W), and mung bean-wheat (B-W). Soil samples were collected from all treatments and SOC, labile-C, and non-labile-C were measured.Results and discussionAfter two years of experiment, no significant improvement was found in SOC of CON strategy (p ≤ 0.05). The ORG and INT strategies contained on average 1.1 and 1.06 times more SOC than the CON strategy, respectively. The value of labile-C was decreased during summer cultivations and increased in the soil samples collected after winter cultivations. However, although the quantity of labile-C in ORG (2 g kg−1) was higher than INT (1.83 g kg−1) and CON (1.87 g kg−1) overall during the experiment time, after the second summer cultivation despite the gradual accumulation of organic matter due to high levels of temperature and humidity, the content in ORG reduced to1.47 g kg−1. In all three agricultural management strategies, the SOC content in the four rotation systems was according to the following descending order B-W (5.7 g kg−1) > C-W (5.29 g kg−1) > S-W (5.23 g kg−1) > F-W (4.52 g kg−1). Therefore, for this region M-W and S-W crop rotation systems are recommended in addition to C-W (which is the most common rotation system). However, crop rotation systems were more beneficial for C-sequestration when combined with organic and inorganic fertilization and crop residue incorporation. This study gives promising results for implementing INT and ORG strategies under long-term cropping systems containing various summer crops in rotation with wheat for improving SOC dynamics in semi-arid regions in Iran.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.