An enormous measure of computerized information is being produced over a wide assortment in the field of data mining strategies. The creation of student achievement prediction models to predict student performance in academic institutions is a key area of the development of Education Data Mining. A prediction system has been proposed by using their 10th, 12th and previous semester marks. The study is evaluated using Binomial logical regression, Decision tree, and Entropy and KNN classifier. In order to attain their higher score, this framework would assist the student to recognize their final grade and improve their academic conduct.
Data mining is a process of finding correlations and collecting and analysing a huge amount of data in a database to discover patterns or relationships. Flight delay creates significant problems in the present aviation system. Data mining techniques are desired for analysing the performance in which micro-level causes propagate to make system-level patterns of delay. Analysing flight delays is very difficult – both when looking from a historical view as well as when estimating delays with forecast demand. This paper proposes using Decision Tree (DT), Support Vector Machine (SVM), Naive Bayesian (NB), K-nearest neighbour (KNN) and Artificial Neural Network (ANN) to study and analyse delays among aircrafts. The performance of different data mining methods is found in the different regions of the updated datasets on these classifiers. Finally, the result shows a significant variation in the performance of different data mining methods and feature selection for this problem. This paper aims to deal with how data mining techniques can be used to understand difficult aircraft system delays in aviation. Our aim is to develop a classification model for studying and reducing delay using different data mining methods and, in this manner, to show that DT has a greater classification accuracy. The different feature selectors are used in this study in order to reduce the number of initial attributes. Our results clearly demonstrate the value of DT for analysing and visualising how system-level effects happen from subsystem-level causes.
Data mining is an iterative process in which progress is defined by discovery through either automatic or manual methods. A data cleaning procedure is proposed to improve the quality of classification tasks in the knowledge discovery process by taking into account both redundant and conflicting data. The redundancy check is performed on the original dataset and the resultant dataset is preserved. This resultant dataset is then checked for conflicting data and, if any are found, they are corrected and updated on the original aircraft dataset. This updated dataset is then classified using a variety of classifiers such as Bayes, functions, lazy, MISC, rules and decision trees. The performance of the updated datasets on these classifiers is examine, and the result shows a significant improvement in the classification accuracy after redundancy and conflicts are removed. The conflicts after correction are updated in the original dataset, and when the performance of the classifier is evaluated, great improvement is observed. This paper aims to address how data mining techniques can be used to understand complex system accidents in the aviation domain. Decision trees are considered to be the one of the most powerful and popular approaches in knowledge discovery and data mining. The objective is to develop a classification model for aviation risk investigation and reduction using a decision tree induction method that enhances the ability to form decision trees and thereby proves that the classification accuracy of decision trees is greater. Different feature selectors are used in this study in order to reduce the number of initial attributes.
Data mining is a data analysis process which is designed for large amounts of data. It proposes a methodology for evaluating risk and safety and describes the main issues of aircraft accidents. We have a huge amount of knowledge and data collection in aviation companies. This paper focuses on different feature selectwindion techniques applied to the datasets of airline databases to understand and clean the dataset. CFS subset evaluator, consistency subset evaluator, gain ratio feature evaluator, information gain attribute evaluator, OneR attribute evaluator, principal components attribute transformer, ReliefF attribute evaluatoboundar and symmetrical uncertainty attribute evaluator are used in this study in order to reduce the number of initial attributes. The classification algorithms, such as DT, KNN, SVM, NN and NB, are used to predict the warning level of the component as the class attribute. We have explored the use of different classification techniques on aviation components data. For this purpose Weka software tools are used. This study also proves that the principal components attribute with decision tree classifier would perform better than other attributes and techniques on airline data. Accuracy is also very highly improved. This work may be useful for an aviation company to make better predictions. Some safety recommendations are also addressed to airline companies.
Data mining approaches have been successfully applied in different fields. Risk and safety have always been important considerations in aviation. There is a large amount of knowledge and data accumulation in aviation industry. These data can be store in the form of pilot reports, maintenance reports, accident reports or delay reports. This paper applied the decision tree model on accident reports of the Federal Aviation Administration (FAA) Accident / incident Data System database, contains 468 accident data records for all categories of aviation between the years of 1970 to 2011. The decision tree classifier is use to predict the warning level of the component as the class attribute. We have explored the use of the decision tree technique on aviation components data. Decision Tree induction algorithm is applied to generate the model and the generated model is used to predict the warning of accidents in the airline database. This work may be useful for Aviation Company to make better prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.