There is dual tactile innervation of the human hairy skin: in addition to fast-conducting myelinated afferent fibers, there is a system of slow-conducting unmyelinated (C) afferents that respond to light touch. In a unique patient lacking large myelinated afferents, we found that activation of C tactile (CT) afferents produced a faint sensation of pleasant touch. Functional magnetic resonance imaging (fMRI) analysis during CT stimulation showed activation of the insular region, but not of somatosensory areas S1 and S2. These findings identify CT as a system for limbic touch that may underlie emotional, hormonal and affiliative responses to caress-like, skin-to-skin contact between individuals.
SUMMARY1. Single unit impulses were recorded with percutaneously inserted tungsten needle electrodes from the median nerve in conscious human subjects.2. A sample of 334 low threshold mechanoreceptive units innervating the glabrous skin area of the hand were studied. In accordance with earlier investigations, the units were separated into four groups on the basis of their adaptation and receptive field properties: RA, PC, SA I and SA II units. 3. The locations of the receptive fields of individual units were determined and the relative unit densities within various skin regions were calculated. The over-all density was found to increase in the proximo-distal direction. There was a slight increase from the palm to the main part of the finger and an abrupt increase from the main part of the finger to the finger tip. The relative densities in these three regions were 1, 1P6, 4-2.4. The differences in over-all density were essentially accounted for by the two types of units characterized by small and well defined receptive fields, the RA and SA I units, whereas the PC and SA II units were almost evenly distributed over the whole glabrous skin area.5. The spatial distribution of densities supports the idea that the RA and SA I units account for spatial acuity in psychophysical tests. This capacity is known to increase in distal direction along the hand.6. On the basis of histological data regarding the number of myelinated fibres in the median nerve, a model of the absolute unit density was proposed. It was estimated that the density of low threshold mechanoreceptive units at the finger tip is as high as 241 u./cm2, whereas in the palm it is only 58 u./cm2.
Impulses were recorded from unmyelinated afferents innervating the forearm skin of human subjects using the technique of microneurography. Units responding to innocuous skin deformation were selected. The sample (n = 38) was split into low-threshold units (n = 27) and high-threshold units (n = 11) on the basis of three distinctive features, i.e., thresholds to skin deformation, size of response to innocuous skin deformation, and differential response to sharp and blunt stimuli. The low-threshold units provisionally were denoted tactile afferents on the basis of their response properties, which strongly suggest that they are coding some feature of tactile stimuli. They exhibited, in many respects, similar functional properties as described for low-threshold C-mechanoreceptive units in other mammals. However, a delayed acceleration, not previously demonstrated, was observed in response to long-lasting innocuous indentations. It was concluded that human hairy skin is innervated by a system of highly sensitive mechanoreceptive units with unmyelinated afferents akin to the system previously described in other mammals. The confirmation that the system is present in the forearm skin and not only in the face area where it first was identified suggests a largely general distribution although there are indications that the tactile C afferents may be lacking in the very distal parts of the limbs. The functional role of the system remains to be assessed although physiological properties of the sense organs invite to speculations that the slow tactile system might have closer relations to limbic functions than to cognitive and motor functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.