Determination of the pressure in the water-conducting vessels of intactNicotiana rustica L. plants showed that the pressure probe technique gave less-negative values than the Scholander-bomb method. Even though absolute values of the order of -0.1 MPa could be directly recorded in the xylem by means of the pressure probe, pressures between zero and atmospheric were also frequently found. The data obtained by the pressure probe for excised leaves showed that the Scholander bomb apparently did not read the actual tension in the xylem vessles ofNicotiana plants. The possibility that the pressure probe gave false readings was excluded by several experimental controls. In addition, cavitation and leaks either during the insertion of the microcapillary of the pressure probe, or else during the measurements were easily recognized when they occurred because of the sudden increase of the absolute xylem tension to that of water vapour or to atmospheric, respectively. Tension values of the same order could also be measured by means of the pressure probe in the xylem vessels of pieces of stem cut from leaves and roots under water and clamped at both ends. The magnitude of the absolute tension depended on the osmolarity of the bathing solution which was adjusted by addition of appropriate concentrations of polyethylene glycol. Partial and uniform pressurisation of plant tissues or organs, or of entire plants (by means of the Scholander bomb or of a hyperbaric chamber, respectively) and simultaneous recording of the xylem tension using the pressure probe showed that a 1∶1 response in xylem pressure only occurred under a few circumstances. A 1∶1 response required that the xylem vessels were in direct contact with an external water reservoir and/or that the tissue was (pre-)infiltrated with water. Corresponding pressure-probe measurements in isolated vascular bundles ofPlantago major L. orP. lanceolata L. plants attached to a Hepp-type osmometer indicated that the magnitude of the tension in the xylem vessels was determined by the external osmotic pressure of the reservoir. These and other experiments, as well as analysis of the data using classical thermodynamics, indicated that the turgor and the internal osmotic pressure of the accessory cells along the xylem vessels play an important role in the maintenance of a constant xylem tension. This conclusion is consistent with the cohesion theory. In agreement with the literature (P.E. Weatherley, 1976, Philos. Trans. R. Soc. London Ser. B23, 435-444; 1982, Encyclopedia of plant physiology, vol. 12B, 79-109), it was found that the tension in the xylem of intact plants under normal and elevated ambient pressure (as measured with the pressure probe) under quasi-stationary conditions was independent of the transpiration rate over a large range, indicating that the conductance of the flow path must be flow-dependent.
The relationships between xylem tension, velocity of water ascending and transpiration in tobacco plants were measured by means of the "xylem pressure probe technique" (Balling, A. and Zimmermann, U., Planta 182,325-338.19901. The flow velocity was determined by suction or injection of fluorescein (or FITC-labelled dextrans of various molecular weights) from the microcapillary of the pressure probe into the punctured xylem vessel, followed by serial-sectioning of the stem after a given propagation time. The distance travelled was defined as the distance from the injection point to the uppermost xylem section in which the dye could be detected.For a transpiration rate of 0.52 f 0.121111 -h-', a linear dependence between the flow velocity and the tension gradients was found as expected from the Hagen-Poiseuille law. The slope of the straight lines decreased with increasing molecular weight of the fluorescent labelled compound, presumably because of (partial) plugging of the pit membranes. The average value of the flow velocity (2.5 -m -s-') was one magnitude smaller than the value estimated from the geometric dimensions of the xylem vessels, but agreed well with the literature value of 2.8 -m
Summary. The effects of saline conditions on the water relations of cells in intact leaf tissue of the facultative CAM plant Mesembryanthemum erystallinum were studied using the pressure probe technique. During a 12-hr light/dark regime a maximum in turgor pressure was recorded for the mesophyll cells of salttreated (CAM) plants at the beginning of the light period followed 6 hr later by a pressure maximum in the bladder cells of the upper epidermis. In contrast, the turgor pressure in the bladder cells of the lower epidermis remained constant during light/dark regime. Turgor pressure maxima were not observed in untreated (C3) plants.This finding strongly supports the assumption that water movement during malate accumulation and degradation in salttreated plants occurs predominantly between the mesophyll cells and the bladder cells of the upper epidermis. The necessary calculations take differences in the compartment volumes and in the elastic moduli of the cell walls (e) of the bladder cells of the lower and upper epidermis into account.Measurements of the kinetics of water transport showed that the half-time of water exchange for the two sorts of bladder cells were nearly identical in CAM plants and in C3 plants. The absolute values of the half-times increased by about 45% in salttreated plants (about 113 sec) compared to the control plants (78 sec). Simultaneously, the half-time of water exchange of the mesophyll cells increased by about 60% from 14 sec (untreated plants) to 22 sec (salt-exposed plants). The leaves of this plant are apparently able to closely maintain the time of propagation of short-term osmotic pressure changes over a large salinity range.A cumulative plot of the e data measured on both C3 and CAM plants showed that the differences between the values of the elastic moduli of bladder cells from the lower and from the upper epidermis are due to differences in volume and suggested that the intrinsic elastic properties of the differently located bladder cells of C3 and CAM plants were identical.A cumulative plot of the hydraulic conductivity of the membrane obtained both on mesophyll and on bladder cells of salttreated and of untreated plants vs. the individual turgor pressure yielded a relationship well-known from giant algal cells and some higher plant cells: The hydraulic conductivity increased at very low pressure, indicating that the water permeability properties of the membrane of the various cell types of C3 and CAM plants are pressure dependent, but otherwise identical.The results suggest that a few fundamental physical relationships control the adaptation of the tissue cells to salinity.Key Words crassulacean acid metabolism (CAM) 9 elastic modulus 9 hydraulic conductivity 9 Mesembryanthemum crystallinum 9 salt stress -turgor
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.