Hydrogen-rich synthesis gas was produced by pulsed dc plasma submerged into ethanol-water mixtures using an original system with a coaxial geometry. The ignition of the discharge is immediately followed by production of hydrogen and after a short time necessary for filling the outlet tubing a flame can be ignited. No auxiliary gas was used for the reforming process. The synthesis gas containing up to 60% of hydrogen was formed, at the outflow rate of 250 sccm at the average power as low as 10 W. The hydrogen production efficiency corresponds to 12 kWh/kg H 2 .
The atmospheric pressure plasma sources with a coaxial geometry were used for generation of the radio frequency, microwave and pulsed dc plasmas inside water and aqueous solutions. Pulsed dc plasma generated in ethanol-water mixtures leads to production of the hydrogen-rich synthesis gas with hydrogen content up to 65 %. The effect of various plasma generation regimes on the performance of plasma, on the hydrogen production efficiency and on the hydrogen-rich synthesis gas production was examined. A role of the composition of the ethanol-water mixture was investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.