Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels are expressed in several tissues throughout the body, including the heart, the CNS, and the retina. HCN channels are found in many neurons in the retina, but their most established role is in generating the hyperpolarization-activated current, I h , in photoreceptors. This current makes the light response of rod and cone photoreceptors more transient, an effect similar to that of a high-pass filter. A unique property of HCN channels is their small single-channel current, which is below the thermal noise threshold of measuring electronics. We use nonstationary fluctuation analysis (NSFA) in the intact retina to estimate the conductance of single HCN channels, revealing a conductance of ϳ650 fS in both rod and cone photoreceptors. We also analyze the properties of HCN channels in salamander rods and cones, from the biophysical to the functional level, showing that HCN1 is the predominant isoform in both cells, and demonstrate how HCN1 channels speed up the light response of both rods and cones under distinct adaptational conditions. We show that in rods and cones, HCN channels increase the natural frequency response of single cells by modifying the photocurrent input, which is limited in its frequency response by the speed of a molecular signaling cascade. In doing so, HCN channels form the first of several systems in the retina that augment the speed of the visual response, allowing an animal to perceive visual stimuli that change more quickly than the underlying photocurrent.
A monumental task of the mammalian retina is to encode an enormous range (>10(9)-fold) of light intensities experienced by the animal in natural environments. Retinal neurons carry out this task by dividing labor into many parallel rod and cone synaptic pathways. Here we study the operational plan of various rod- and cone-mediated pathways by analyzing electroretinograms (ERGs), primarily b-wave responses, in dark-adapted wildtype, connexin36 knockout, depolarizing rod-bipolar cell (DBCR) knockout, and rod transducin alpha-subunit knockout mice [WT, Cx36(-/-), Bhlhb4(-/-), and Tralpha(-/-)]. To provide additional insight into the cellular origins of various components of the ERG, we compared dark-adapted ERG responses with response dynamic ranges of individual retinal cells recorded with patch electrodes from dark-adapted mouse retinas published from other studies. Our results suggest that the connexin36-mediated rod-cone coupling is weak when light stimulation is weak and becomes stronger as light stimulation increases in strength and that rod signals may be transmitted to some DBCCs via direct chemical synapses. Moreover, our analysis indicates that DBCR responses contribute about 80% of the overall DBC response to scotopic light and that rod and cone signals contribute almost equally to the overall DBC responses when stimuli are strong enough to saturate the rod bipolar cell response. Furthermore, our study demonstrates that analysis of ERG b-wave of dark-adapted, pathway-specific mutants can be used as an in vivo tool for dissecting rod and cone synaptic pathways and for studying the functions of pathway-specific gene products in the retina.
A substantial proportion of migraine patients have gastric stasis and suffer severe nausea and/or vomiting during their migraine attack. This may lead to erratic absorption from the gastrointestinal tract and make oral treatment unsatisfactory. For such patients, an intranasal formulation may be advantageous. Sumatriptan is a potent serotonin 5HT(1B/1D) agonist widely used in the treatment of migraine; the effectiveness of the intranasal formulation (20mg) has been well established in several clinical studies. This article reviews the pharmacokinetics of intranasal sumatriptan and includes comparisons with oral and subcutaneous administration. After intranasal administration, sumatriptan is directly and rapidly absorbed, with 60% of the maximum plasma concentration (C(max)) occurring at 30 minutes after administration of a single 20mg dose. Following intranasal administration, approximately 10% more sumatriptan is absorbed probably via the nasal mucosa when compared with oral administration. Mean C(max) after a 20mg intranasal dose is approximately 13.1 to 14.4 ng/mL, with median time to C(max) approximately 1 to 1.75 hours. When given as a single dose, intranasal sumatriptan displays dose proportionality in its extent of absorption and C(max) over the dose range 5 to 10mg, but not between 5 and 20mg for C(max). The elimination phase half-life is approximately 2 hours, consistent with administration by other routes. Sumatriptan is metabolised by monoamine oxidase (MAO; predominantly the A isozyme, MAO-A) to an inactive metabolite. Coadministration with a MAO-A inhibitor, moclobemide, leads to a significant increase in sumatriptan plasma concentrations and is contraindicated. Single-dose pharmacokinetics in paediatric and adolescent patients following intranasal sumatriptan were studied to determine the effect of changes in nasal morphology during growth, and of body size, on pharmacokinetic parameters. The pharmacokinetic profile observed in adults was maintained in the adolescent population; generally, factors such as age, bodyweight or height did not significantly affect the pharmacokinetics. In children below 12 years, C(max) is comparable to that seen in adolescents and adults, but total exposure (area under the concentration-time curve from zero to infinity) was lower in children compared with older patients, especially in younger children treated with 5mg. Clinical experience suggests that intranasal sumatriptan has some advantages over the tablet (more rapid onset of effect and use in patients with gastrointestinal complaints) or subcutaneous (noninvasive and fewer adverse events) formulations.
Photoreceptor output synapses are the best known tonic chemical synapses in the nervous system, in which glutamate is continuously released in darkness, activating AMPA/kainate receptors in postsynaptic neurons. It has been shown that glutamate receptors in certain types of second-order retinal cells are largely desensitized in darkness, leading to small postsynaptic currents and reduced response dynamic ranges. Here we show that the tonic glutamatergic synapses between photoreceptors and rod-dominated hyperpolarizing bipolar cells (HBC R s) in the salamander retina evade postsynaptic receptor desensitization by using (1) multiple invaginating ribbon junctions as releasing sites for low-frequency, synchronized multiquantal release at each site; and (2) the GluR4 AMPA receptors as the postsynaptic receptors. The multiquantal events exhibit faster decay time than the GluR4 receptor desensitization time constant and therefore self-desensitization is minimized, and the average inter-event duration in darkness is much longer than the GluR4 desensitization recovery time and thus mutual desensitization is avoided. Consequently, the HBC R s are not desensitized in darkness, allowing light signals to be encoded by the full operating range of the glutamate-gated postsynaptic currents. Our study illustrates for the first time how a tonic glutamatergic synapse avoids postsynaptic receptor desensitization, a strategy that may be shared by many other synapses in the nervous system that need extended operation capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.