The strongest point about damage identification based on the dynamic measurements, is the ability perform structural health evaluation globally. Researchers in the last few years payed more attention to damage indicators based on modal analysis using either frequencies, mode shapes, or Frequency Response Functions (FRFs). This paper presents a new application of damage identification in a cross-ply (0°/90°/0°) laminated composite plate based on Force Residual Method (FRM) damage indicator. Considering single and multiple damages with different damage levels. As well as investigating the SSSS and CCCC boundary conditions effect on the estimation accuracy. Moreover, a white Gaussian noise is introduced to test the challenge the technique. The results show that the suggested FRM indicator provides accurate results under different boundary conditions. Favouring the SSSS boundary condition than the CCCC for 3% noise.
In this paper, a new experimental study of the bending static and fatigue behaviors of a composite material reinforced with 40% by mass of short glass fibers (type E) and polypropylene matrix is presented. The composite material is obtained in the form of plates by an injection process, which inevitably affects the distribution of the fibers and therefore the behavior of the material studied. To do this, several techniques are implemented on specimens by cutting them in transverse and longitudinal directions. The effect of aging in distilled water at 40℃ on the mechanical characteristics is studied under static and fatigue loading conditions. The static tests, three-point flexure up to failure, allow us to choose the levels of stress for the fatigue tests. The endurance curves as a function of the number of cycles are plotted by adapting the end-of-test criteria N5, N10, and N20, which represent a rigidity drop of 5%, 10%, and 20%, respectively. An interpretation of the Wöhler curve equations defined for the end-of-test criteria allows defining the kinetics of material damage. The results highlighted the influence of distilled water on the mechanical behavior and the lifetime of the material. We also perform macroscopic observations of fracture and microscopic facies in order to identify the damage mechanisms of the composite material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.