This paper deals with the nonlinear oscillation of a simple pendulum and presents not only the exact formula for the period but also the exact expression of the angular displacement as a function of the time, the amplitude of oscillations and the angular frequency for small oscillations. This angular displacement is written in terms of the Jacobi elliptic function sn(u;m) using the following initial conditions: the initial angular displacement is different from zero while the initial angular velocity is zero. The angular displacements are plotted using Mathematica, an available symbolic computer program that allows us to plot easily the function obtained. As we will see, even for amplitudes as high as 0.75π (135 • ) it is possible to use the expression for the angular displacement, but considering the exact expression for the angular frequency ω in terms of the complete elliptic integral of the first kind. We can conclude that for amplitudes lower than 135 o the periodic motion exhibited by a simple pendulum is practically harmonic but its oscillations are not isochronous (the period is a function of the initial amplitude). We believe that present study may be a suitable and fruitful exercise for teaching and better understanding the behavior of the nonlinear pendulum in advanced undergraduate courses on classical mechanics. Keywords: simple pendulum, large-angle period, angular displacement.Este artigo aborda a oscilação não-linear de um pêndulo simples e apresenta não apenas a fórmula exata do período mas também a dependencia temporal do deslocamento angular para amplitudes das oscilações e a freqüência angular para pequenas oscilações. O deslocamento angularé escrito em termos da função elíptica de Jacobi sn(u;m) usando as seguintes condições iniciais: o deslocamento angular inicialé diferente de zero enquanto que a velocidade angular inicialé zero. Os deslocamentos angulares são plotados usando Mathematica, um disponível programa simbólico de computador que nos permite plotar facilmente a função obtida. Como veremos, mesmo para amplitudes tão grandes quanto 0,75π (135 o )é possível usar a expressão para o deslocamento angular mas considerando a expressão exata para a freqüência angular w em termos da integral elíptica completa de primeira espécie. Concluímos que, para amplitudes menores que 135 o , o movimento periódico exibido por um pêndulo simplesé praticamente harmônico, mas suas oscilações não são isócronas (o períodoé uma função da amplitude inicial). Acreditamos que o presente estudo possa tornar-se um exercício conveniente e frutífero para o ensino e para uma melhor compreensão do pêndulo não-linear em cursos avançados de mecânica clássica na graduação. Palavras-chave: pêndulo simples, período a grandesângulos, deslocamento angular.Perhaps one of the nonlinear systems most studied and analyzed is the simple pendulum [1][2][3][4][5][6][7][8][9][10][11][12], which is the most popular textbook example of a nonlinear system and is studied not only in advanced but also in introductory university courses o...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.