The electronic structure of gas-phase H(2)O and D(2)O molecules has been investigated using resonant inelastic soft x-ray scattering (RIXS). We observe spectator shifts for all valence orbitals when exciting into the lowest three absorption resonances. Strong changes of the relative valence orbital emission intensities are found when exciting into the different absorption resonances, which can be related to the angular anisotropy of the RIXS process. Furthermore, excitation into the 4a(1) resonance leads to nuclear dynamics on the time scale of the RIXS process; we find evidence for vibrational coupling and molecular dissociation in both, the spectator and the participant emission.
The molecular structure of liquid water is susceptible to changes upon admixture of salts due to ionic solvation, which provides the basis of many chemical and biochemical processes. Here we demonstrate how the local electronic structure of aqueous potassium chloride (KCl) solutions can be studied by resonant inelastic soft X-ray scattering (RIXS) to monitor the effects of the ion solvation on the hydrogen-bond (HB) network of liquid water. Significant changes in the oxygen K-edge emission spectra are observed with increasing KCl concentration. These changes can be attributed to modifications in the proton dynamics, caused by a specific coordination structure around the salt ions. Analysis of the spectator decay spectra reveals a spectral signature that could be characteristic of this structure.
The electronic structure of the amino acid L-cysteine in an aqueous environment was studied using resonant inelastic soft X-ray scattering (RIXS) in a 2D map representation and analyzed in the framework of a "building block" approach. The element selectivity of RIXS allows a local investigation of the electronic structure of the three functional groups of cysteine, namely, the carboxyl, amino, and thiol groups, by measuring at the O K, N K, and S L2,3 edges, respectively. Variation of the pH value allows an investigation of molecules with protonated and deprotonated functional groups, which can then be compared with simple reference molecules that represent the isolated functional groups. We find that such building blocks can provide an excellent description of X-ray emission spectroscopy (XES) and RIXS spectra, but only if all nearest-neighbor atoms are included. This finding is analogous to the building block principle commonly used in X-ray absorption spectroscopy. The building blocks show a distinct spectral character (fingerprint) and allow a comprehensive interpretation of the cysteine spectra. This simple approach opens the path to investigate the electronic structure of more complex biological molecules in aqueous solutions using XES and RIXS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.