The palladium-catalyzed coupling of haloarcnes and haloalkenes with alkenes. which was discovered by Richard F. Heck in the late sixties, has been a topic of fluctuating interest; however. in the last six years activity in this area has flourished. Careful choice of substrates and skillful tailoring of reaction conditions lead to impressive sequences consisting of even different reaction types that occur not only in a consecutive mode, but also i n a single operation. The wellestablished Heck reaction. together with other inechanistically related palladiumcatalyzed transformations with arene, alkene. and alkyne derivatives. opens the door to a tremendous variety of elegant and highly convergent routes to structurally complex molecules. The reaction is not disturbed by heteroatoms such as oxygen and nitrogen (nor by sulfur and phosphorus with some limitations). The spectrum of recent achievements starts with a range of chemoselective and regioselective monocouplings of highly functionalized substrates with unsymmetrical and multisubstituted reaction partners. Other advances include cascade reactions in which three. four, five, and even eight new C-C bonds are formed to yield oligofunctional and oligocyclic products with impressive molecular complexity. Even the enantioselective construction of complex natural products with quaternary stereocenters has been achieved with Heck reactions in key steps. as exemplified by the synthesis of crinan, picrotoxinin, and morphine. Today. the Heck reaction is indispensible in the arsenal of synthetic methods available to organic chemists. Certainly it is only a
The electronic structure of gas-phase H(2)O and D(2)O molecules has been investigated using resonant inelastic soft x-ray scattering (RIXS). We observe spectator shifts for all valence orbitals when exciting into the lowest three absorption resonances. Strong changes of the relative valence orbital emission intensities are found when exciting into the different absorption resonances, which can be related to the angular anisotropy of the RIXS process. Furthermore, excitation into the 4a(1) resonance leads to nuclear dynamics on the time scale of the RIXS process; we find evidence for vibrational coupling and molecular dissociation in both, the spectator and the participant emission.
Die von Richard F. Heck Ende der sechziger Jahre entdeckte Palladium‐katalysierte Kupplung von Aryl‐ und Alkenylhalogeniden mit Alkenen hat sich nach gelegentlichem Auf‐ und Abschwellen des darauf gerichteten Interesses in den letzten sechs Jahren nachhaltig gemausert. Durch geschickte Auswahl der Substrate und sorgfältige Anpassung der Reaktionsbedingungen gelingen beeindruckende Sequenzen auch unterschiedlicher Reaktionstypen nicht nur nacheinander, sondern vielfach in einem einzigen Verfahrensschritt. Die mittlerweile etablierte Heck‐Reaktion – und eine Reihe mit ihr mechanistisch verwandter Palladium‐katalysierter Umwandlungen an Aren‐, Alken‐ und Alkinderivaten – bietet ungezählte Möglichkeiten, elegant und hochkonvergent komplexe Moleküle aufzubauen; dabei bereiten Sauerstoff‐ und Stickstoffatome (mit Einschränkungen auch Schwefel‐ und Phosphoratome) in den Reaktionen keine Probleme. Das Spektrum der neueren Erfolge beginnt mit den chemo‐ und regioselektiven Einfachkupplungen hochfunktionalisierter Substrate mit unsymmetrisch mehrfach substituierten Reaktionspartnern. Es reicht allerdings viel weiter über Kaskadenreaktionen mit Knüpfung von drei, vier, fünf oder gar acht neuen CC‐Bindungen unter Bildung von oligofunktionellen und oligocyclischen Produkten von beeindruckender Molekülkomplexität bis hin zum enantioselektiven Aufbau von anspruchsvollen Naturstoffmolekülen mit quartären stereogenen Zentren, wie die Beispiele Crinan, Picrotoxinin, Morphin und viele mehr belegen. Zweifellos läßt sich schon heute die Heck‐Reaktion aus dem Methodenarsenal der präparativen Organischen Chemie nicht mehr wegdenken; abzuwarten bleibt lediglich, wann sie Einzug in ein industrielles Produktionsverfahren halten wird.
The molecular structure of liquid water is susceptible to changes upon admixture of salts due to ionic solvation, which provides the basis of many chemical and biochemical processes. Here we demonstrate how the local electronic structure of aqueous potassium chloride (KCl) solutions can be studied by resonant inelastic soft X-ray scattering (RIXS) to monitor the effects of the ion solvation on the hydrogen-bond (HB) network of liquid water. Significant changes in the oxygen K-edge emission spectra are observed with increasing KCl concentration. These changes can be attributed to modifications in the proton dynamics, caused by a specific coordination structure around the salt ions. Analysis of the spectator decay spectra reveals a spectral signature that could be characteristic of this structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.