The dense stroma in pancreatic cancer tumours is rich in secreted extracellular matrix proteins and proteoglycans. Secreted hyaluronan, osteopontin and type IV collagen sustain oncogenic signalling by interactions with CD44s and its variant isoform CD44v6 on cancer cell membranes. Although well established in animal and in vitro models, this oncogenic CD44‐stromal ligand network is less explored in human cancer. Here, we use a pancreatic cancer tissue microarray from 69 primary tumours and 37 metastatic lymph nodes and demonstrate that high tumour cell expression of CD44s and, surprisingly, low stromal deposition of osteopontin correlate with poor survival independent of established prognostic factors for pancreatic cancer. High stromal expression of hyaluronan was a universal trait of both primary tumours and metastatic lymph nodes. However, hyaluronan species of different molecular mass are known to function differently in pancreatic cancer biology and immunohistochemistry cannot distinguish between them. Using gas‐phase electrophoretic molecular mobility analysis, we uncover a shift towards high molecular mass hyaluronan in pancreatic cancer tissue compared to normal pancreas and at a transcriptional level, we find that hyaluronan synthesising HAS2 correlates positively with CD44. The resulting prediction that high molecular mass hyaluronan would then correlate with poor survival in pancreatic cancer was confirmed in serum samples, where we demonstrate that hyaluronan >27 kDa measured before surgery is an independent predictor of postoperative survival. Our findings confirm the prognostic value of CD44 tissue expression and highlight osteopontin tissue expression and serum high molecular mass hyaluronan as novel prognostic markers in pancreatic cancer.
Breast cancer is the most common cause of cancer death among women worldwide. Localized breast cancer can be cured by surgery and adjuvant therapy, but mortality remains high for tumors that metastasize early. Type IV collagen is a basement membrane protein, and breach of this extracellular matrix structure is the first step of cancer invasion. Type IV collagen is found in the stroma of many cancers, but its role in tumor biology is unclear. Here, expression of type IV collagen in the stroma of small breast cancers was analyzed, correlated to clinically used prognostic biomarkers and patient survival. The findings were further validated in an independent gene expression data cohort. Tissue samples from 1,379 women with in situ and small invasive breast cancers (≤15 mm) diagnosed in 1986-2004 were included. Primary tumor tissue was collected into tissue microarrays. Type IV collagen expression in tissues was visualized using immunohistochemistry. Gene expression data was extracted from the Cancer Genome Atlas database. Out of 1,379 women, 856 had an invasive breast cancer and type IV collagen staining was available for 714 patients. In Kaplan-Meier analysis high type IV collagen expression was significantly associated (p = 0.026) with poorer breast cancer specific survival. There was no correlation of type IV collagen expression to clinically used prognostic biomarkers. High type IV collagen expression was clearly associated to distant metastasis (p = 0.002). In an external validation cohort (n = 1,104), high type IV collagen mRNA expression was significantly (p = 0.041) associated with poorer overall survival, with overexpression of type IV collagen mRNA in metastatic tissue. Stromal type IV collagen expression in the primary tumor correlates to poor breast cancer specific survival most likely due to a higher risk of developing distant metastasis. This ECM protein may function as biomarker to predict the risk of future metastatic disease in patients with breast cancers.
Circulating type IV collagen (cCOL IV) is a potential biomarker for patients with colorectal liver metastases (CLM) who present with elevated levels of COL IV in both CLM tissue and circulation. This study aimed to establish the cellular origin of elevated levels of COL IV and analyze circulating COL IV in CLM patients. The cellular source was established through in situ hybridization, immunohistochemical staining, and morphological evaluation. Cellular expression in vitro was assessed by immunofluorescence. Tissue expression of COL IV-degrading matrix metalloproteinases (MMPs)-2, -7, -9, and -13 was studied with immunohistochemical staining. Plasma levels of COL IV in CLM patients and healthy controls were analyzed with ELISA. This study shows that cancer-associated fibroblasts (CAFs) express COL IV in the stroma of CLM and that COL IV is expressed in vitro by fibroblasts but not by tumor cells. MMP-2, -7, -9, and -13 are expressed in CLM tissue, mainly by hepatocytes and immune cells, and circulating COL IV is significantly elevated in CLM patients compared with healthy controls. Our study shows that stromal cells, not tumor cells, produce COL IV in CLM, and that circulating COL IV is elevated in patients with CLM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.