We hypothesized that whole body glucose uptake (Rd) during exercise is not related in a simple, linear manner to O2 uptake (VO2). To test this, seven healthy male subjects (age range 23-34 yr) were studied in the postabsorptive but not glycogen-depleted state. Three conditions were examined: 1) rest, 2) 40 min of constant exercise in which the work rates were carefully chosen to consist of low-intensity exercise (no elevated blood lactate, a mean of 40% maximal VO2), and 3) 40 min of high-intensity exercise (markedly elevated blood lactate, 79% maximal VO2). Gas exchange was measured breath by breath, and glucose uptake and production were measured using [6,6-2H2]glucose. Low-intensity exercise (n = 7) resulted in a small but not statistically significant increase in mean Rd [3.06 +/- 0.37 (SE) mg.min-1.kg-1] compared with resting values (2.87 +/- 0.39 mg.min-1.kg-1) despite a fourfold increase in the production of CO2 and VO2. By contrast, the high-intensity exercise Rd (n = 5, 6.98 +/- 0.67 mg.min-1.kg-1) was significantly greater than the resting value (3.03 +/- 0.56 mg.min-1.kg-1). Results of glucose production were virtually the same. Similarly, mean levels of epinephrine and norepinephrine increased significantly above resting values during high- but not low-intensity exercise. Our data demonstrate that whole body glucose dynamics and regulation during 40 min of exercise do not change in a simple linear manner with respect to metabolic rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.