Composite biogenic materials produced by organisms have a complicated design on a nanometre scale. An outstanding example of organic-inorganic composites is provided by mollusc seashells, whose superior mechanical properties are due to their multi-level crystalline hierarchy and the presence of a small amount (0.1-5 wt%) of organic molecules. The presence of organic molecules, among other characteristics, can influence the coherence length for X-ray scattering in biogenic crystals. Here we show the results of synchrotron high-resolution X-ray powder diffraction measurements in biogenic and non-biogenic (geological) aragonite crystals. On applying the Rietveld refinement procedure to the high-resolution diffraction spectra, we were able to extract the aragonite lattice parameters with an accuracy of 10 p.p.m. As a result, we found anisotropic lattice distortions in biogenic aragonite relative to the geological sample, maximum distortion being 0.1% along the c axis of the orthorhombic unit cell. The organic molecules could be a source of these structural distortions in biogenic crystals. This finding may be important to the general understanding of the biomineralization process and the development of bio-inspired 'smart' materials.
Biomineralization processes in living organisms result in the formation of skeletal elements with complex ultrastructures. Although the formation pathways in sea urchin larvae are known, the interrelation between calcite, amorphous calcium carbonate (ACC), and intra-crystalline organics in adult sea urchin biominerals is less clear. Here, we study this interplay in the spines and test 2 plates of the Paracentrotus lividus sea urchins whose skeletal elements have optimized functionproperties relationships. Thermogravimetric analysis coupled with differential scanning calorimetry or mass spectrometry measurements, nuclear magnetic resonance technique and high-resolution powder X-ray diffraction show that pristine spines and test plates are composed of Mg-rich calcite and comprise about 10 wt. % of anhydrous ACC, 1.2 to 1.6 wt. % of organics, and less than 0.2 wt. % of water. Anhydrous ACC originates from incomplete crystallization of a precursor ACC phase during biomineralization and is associated with intra-crystalline organics at the molecular level. Molecular interactions at organic/inorganic interfaces cause significant calcite lattice distortions of the tensile type. The latter are amplified during ACC crystallization and finally disappear after heat-assisted destruction of organic molecules. Converting the measured lattice distortions (strains) into internal stress components, we follow stress evolution upon annealing and find that complete crystallization of ACC leads to the isotropy of residual stresses in all investigated skeletal parts. These results allow us to speculate that organic macromolecules are preferentially attached to different crystallographic planes in the pristine test and spine samples.
The structure and chemistry of what initially was proposed to be Ti 3 Al 2 N 2 are incorrect. Using high-resolution transmission electron microscopy, together with chemical analysis, the stoichiometry of this compound is concluded to be Ti 4 AlN 3−␦ (where ␦ = 0.1). The structure is layered, wherein every four layers of almost-close-packed Ti atoms are separated by a layer of Al atoms. The N atoms occupy ∼97.5% of the octahedral sites between the Ti atoms. The unit cell is comprised of eight layers of Ti atoms and two layers of Al atoms; the unit cell is hexagonal with P6 3 /mmc symmetry (lattice parameters of a = 0.3 nm and c = 2.33 nm). This compound is machinable and closely related to other layered, ternary, machinable, hexagonal nitrides and carbides, namely M 2 AX and M 3 AX 2 (where M is an early transition metal, A is an A-group element, and X is carbon and/or nitrogen).
Polycrystalline Cd1−xZnxTe films were grown on glass substrates over the full range of compositions (0 < x < 1) by metal–organic chemical vapour deposition at 480 °C. The films (∼5 µm thick) showed uniform texture oriented along the ⟨1 1 1⟩ direction, perpendicular to the substrate, independent of the film composition. The dependence of the lattice parameter of cubic Cd1−xZnxTe on the composition followed Vegard's law. The thick Cd1−xZnxTe films were shown to be of a single phase and structurally stable. The average grain size in the thick films was in the range 3–5 µm. The dominant imperfections in the films were twins (mostly Σ = 3) and dislocations. The x-ray diffraction (XRD) FWHM parameter reached a maximum at x = 0.5. Transmission electron microscopy (TEM) in situ heating in the range 200–400 °C caused plastic deformation in the grains without causing ordering effects. Optical absorption and low-temperature photoluminescence measurements confirmed the XRD and TEM results.
In the absence of minerals as stiffening agents, insects and spiders often use metal‐ion cross‐linking of protein matrices in their fully organic load‐bearing “tools.” In this comparative study, the hierarchical fiber architecture, elemental distribution, and the micromechanical properties of the manganese‐ and calcium‐rich cuticle of the claws of the spider Cupiennius salei, and the Zn‐rich cuticle of the cheliceral fangs of the same animal are analyzed. By correlating experimental results to finite element analysis, functional microstructural and compositional adaptations are inferred leading to remarkable damage resilience and abrasion tolerance, respectively. The results further reveal that the incorporation of both zinc and manganese/calcium correlates well with increased biomaterial's stiffness and hardness. However, the abrasion‐resistance of the claw material cross‐linked by incorporation of Mn/Ca‐ions surpasses that of many other non‐mineralized biological counterparts and is comparable to that of the fang with more than triple Zn content. These biomaterial‐adaptation paradigms for enhanced wear‐resistance may serve as novel design principles for advanced, high‐performance, functional surfaces, and graded materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.