Composite biogenic materials produced by organisms have a complicated design on a nanometre scale. An outstanding example of organic-inorganic composites is provided by mollusc seashells, whose superior mechanical properties are due to their multi-level crystalline hierarchy and the presence of a small amount (0.1-5 wt%) of organic molecules. The presence of organic molecules, among other characteristics, can influence the coherence length for X-ray scattering in biogenic crystals. Here we show the results of synchrotron high-resolution X-ray powder diffraction measurements in biogenic and non-biogenic (geological) aragonite crystals. On applying the Rietveld refinement procedure to the high-resolution diffraction spectra, we were able to extract the aragonite lattice parameters with an accuracy of 10 p.p.m. As a result, we found anisotropic lattice distortions in biogenic aragonite relative to the geological sample, maximum distortion being 0.1% along the c axis of the orthorhombic unit cell. The organic molecules could be a source of these structural distortions in biogenic crystals. This finding may be important to the general understanding of the biomineralization process and the development of bio-inspired 'smart' materials.
Reduced conductivity in poly(3,4-ethylenedioxythiophen)-poly(styrene sulfonate) and indium tin oxide nanocomposite for low indium tin oxide content J. Appl. Phys. 105, 054318 (2009); 10.1063/1.3080154 Impedance spectroscopy and optical characterization of polymethyl methacrylate/indium tin oxide nanocomposites with three-dimensional Voronoi microstructuresThe defect structure of bulk and nano-indium-tin oxide was investigated by a combination of experimental techniques, including high-resolution synchrotron x-ray diffraction, extended x-ray absorption fine structure, and time-of-flight neutron diffraction on powder specimens. The structural results include atomic positions, cation distributions, and oxygen interstitial populations for oxidized and reduced materials. These structural parameters were correlated with theoretical calculations and in situ electrical conductivity and thermopower measurements as well as existing defect models, with special reference to the model of Frank and Köstlin [G. Frank and H. Köstlin, Appl. Phys. A 27, 197 (1982)].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.