In this paper are described the groups of automorphisms of semigroup End(W (X)), where W (X) is free commutative or free associative algebra.H. Then arbitrary congruence T in W determines the set of points in affine space Hom(W, H):
Let [Formula: see text] be the variety of associative algebras over a field K and A = K 〈x1,…, xn〉 be a free associative algebra in the variety [Formula: see text] freely generated by a set X = {x1,…, xn}, End A the semigroup of endomorphisms of A, and Aut End A the group of automorphisms of the semigroup End A. We prove that the group Aut End A is generated by semi-inner and mirror automorphisms of End A. A similar result is obtained for the automorphism group Aut [Formula: see text], where [Formula: see text] is the subcategory of finitely generated free algebras of the variety [Formula: see text]. The later result solves Problem 3.9 formulated in [17].
In this paper, we study the geometric equivalence of algebras in several varieties of algebras. We solve some of the problems formulated in [2], in particular, that of geometric equivalence for real-closed fields and finitely generated commutative groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.