We discuss a conjecture which says that the automorphism group of the Weyl algebra in characteristic zero is canonically isomorphic to the automorphism group of the corresponding Poisson algebra of classical polynomial symbols. Several arguments in favor of this conjecture are presented, all based on the consideration of the reduction of the Weyl algebra to positive characteristic.
Abstract. The objective of this paper is to describe the structure of Zariskiclosed algebras, which provide a useful generalization to finite dimensional algebras in the study of representable algebras over finite fields. Our results include a version of Wedderburn's principal theorem as well as a more explicit description using representations, in terms of "gluing" in Wedderburn components. Finally, we construct "generic" Zariski-closed algebras, whose description is considerably more complicated than the description of generic algebra of finite dimensional algebras.Special attention is given to infinite dimensional algebras over finite fields.
Let [Formula: see text] be the variety of associative algebras over a field K and A = K 〈x1,…, xn〉 be a free associative algebra in the variety [Formula: see text] freely generated by a set X = {x1,…, xn}, End A the semigroup of endomorphisms of A, and Aut End A the group of automorphisms of the semigroup End A. We prove that the group Aut End A is generated by semi-inner and mirror automorphisms of End A. A similar result is obtained for the automorphism group Aut [Formula: see text], where [Formula: see text] is the subcategory of finitely generated free algebras of the variety [Formula: see text]. The later result solves Problem 3.9 formulated in [17].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.