Oncocytic tumors are characterized by cells with an aberrant accumulation of mitochondria. To assess mitochondrial function in neoplastic oncocytic cells, we studied the thyroid oncocytic cell line XTC.UC1 and compared it with other thyroid non-oncocytic cell lines. Only XTC.UC1 cells were unable to survive in galactose, a condition forcing cells to rely solely on mitochondria for energy production. The rate of respiration and mitochondrial ATP synthesis driven by complex I substrates was severely reduced in XTC.UC1 cells. Furthermore, the enzymatic activity of complexes I and III was dramatically decreased in these cells compared with controls, in conjunction with a strongly enhanced production of reactive oxygen species. Osteosarcoma-derived transmitochondrial cell hybrids (cybrids) carrying XTC.UC1 mitochondrial DNA (mtDNA) were generated to discriminate whether the energetic failure depended on mitochondrial or nuclear DNA mutations. In galactose medium, XTC.UC1 cybrid clones showed reduced viability and ATP content, similarly to the parental XTC.UC1, clearly pointing to the existence of mtDNA alterations. Sequencing of XTC.UC1 mtDNA identified a frameshift mutation in ND1 and a nonconservative substitution in cytochrome b, two mutations with a clear pathogenic potential. In conclusion, this is the first demonstration that mitochondrial dysfunction of XTC.UC1 is due to a combined complex I/III defect associated with mtDNA mutations, as proven by the transfer of the defective energetic phenotype with the mitochondrial genome into the cybrids. (Cancer Res 2006; 66(12): 6087-96)
This review examines two aspects of the structure and function of mitochondrial Complex I (NADH Coenzyme Q oxidoreductase) that have become matter of recent debate. The supramolecular organization of Complex I and its structural relation with the remainder of the respiratory chain are uncertain. Although the random diffusion model [C.R. Hackenbrock, B. Chazotte, S.S. Gupte, The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport, J. Bioenerg. Biomembranes 18 (1986) 331-368] has been widely accepted, recent evidence suggests the presence of supramolecular aggregates. In particular, evidence for a Complex I-Complex III supercomplex stems from both structural and kinetic studies. Electron transfer in the supercomplex may occur by electron channelling through bound Coenzyme Q in equilibrium with the pool in the membrane lipids. The amount and nature of the lipids modify the aggregation state and there is evidence that lipid peroxidation induces supercomplex disaggregation. Another important aspect in Complex I is its capacity to reduce oxygen with formation of superoxide anion. The site of escape of the single electron is debated and either FMN, iron-sulphur clusters, and ubisemiquinone have been suggested. The finding in our laboratory that two classes of hydrophobic inhibitors have opposite effects on superoxide production favours an iron-sulphur cluster (presumably N2) is the direct oxygen reductant. The implications in human pathology of better knowledge on these aspects of Complex I structure and function are briefly discussed.
Mitochondria are known to be strong producers of reactive oxygen species (ROS) and, at the same time, particularly susceptible to the oxidative damage produced by their action on lipids, proteins, and DNA. In particular, damage to mtDNA induces alterations to the polypeptides encoded by mtDNA in the respiratory complexes, with consequent decrease of electron transfer, leading to further production of ROS and thus establishing a vicious circle of oxidative stress and energetic decline. This deficiency in mitochondrial energetic capacity is considered the cause of aging and age-related degenerative diseases. Complex I would be the enzyme most affected by ROS, since it contains seven of the 13 subunits encoded by mtDNA. Accordingly, we found that complex I activity is significantly affected by aging in rat brain and liver mitochondria as well as in human platelets. Moreover, due to its rate control over aerobic respiration, such alterations are reflected on the entire oxidative phosphorylation system. We also investigated the role of mitochondrial complex I in superoxide production and found that the one-electron donor to oxygen is most probably the Fe-S cluster N2. Short chain coenzyme Q (CoQ) analogues enhance ROS formation, presumably by mediating electron transfer from N2 to oxygen, both in bovine heart SMP and in cultured HL60 cells. Nevertheless, we have accumulated much evidence of the antioxidant role of reduced CoQ(10) in several cellular systems and demonstrated the importance of DT-diaphorase and other internal cellular reductases to reduce exogenous CoQ(10) after incorporation.
The supra-molecular assembly of the main respiratory chain enzymatic complexes in the form of "super-complexes" has been proved by structural and functional experimental evidence. This evidence strongly contrasts the previously accepted Random Diffusion Model stating that the complexes are functionally connected by lateral diffusion of small redox molecules (i.e. Coenzyme Q and cytochrome c). This review critically examines the available evidence and provides an analysis of the functional consequences of the intermolecular association of the respiratory complexes pointing out the role of Coenzyme Q and of cytochrome c as channeled or as freely diffusing intermediates in the electron transfer activity of their partner enzymes.
The mitochondrial respiratory chain is a powerful source of reactive oxygen species (ROS), which is considered as the pathogenic agent of many diseases and of aging. We have investigated the role of complex I in superoxide radical production and found by the combined use of specific inhibitors of complex I that the one-electron donor to oxygen in the complex is a redox center located prior to the sites where three different types of Coenzyme Q (CoQ) competitors bind, to be identified with an Fe-S cluster, most probably N2, or possibly an ubisemiquinone intermediate insensitive to all the above inhibitors. Short-chain Coenzyme Q analogs enhance superoxide formation, presumably by mediating electron transfer from N2 to oxygen. The clinically used CoQ analog, idebenone, is particularly effective, raising doubts on its safety as a drug. Cells counteract oxidative stress by antioxidants. CoQ is the only lipophilic antioxidant to be biosynthesized. Exogenous CoQ, however, protects cells from oxidative stress by conversion into its reduced antioxidant form by cellular reductases. The plasma membrane oxidoreductase and DT-diaphorase are two such systems, likewise, they are overexpressed under oxidative stress conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.