Localization and magnetism of Fe replacing either Mn or Ni in the Ni2Mn1.44Sn0.56-type Heusler alloy have been systematically investigated using magnetization, scanning electron microscopy and Mössbauer spectroscopy. It has been shown that the addition of Fe either in Mn or in Ni sites reduces the fraction of the Mn-rich NiMnSn-type Heusler alloys that has short-range antiferromagnetic interactions; consequently it reduces the martensitic–austenitic transition temperature and increases the thermal hysteresis width due to an increase in atomic disorder caused by Fe replacements. The Fe atoms in Mn sites have two magnetic configurations with magnetic moments of 0.8μB/Fe and 1.4μB/Fe in the martensitic orthorhombic structure, while Fe in Ni sites have magnetic moments smaller than 0.1μB/Fe. These results indicate that the Fe atoms are distinctly substituting either Mn or Ni and the decrease in the martensitic phase transition temperature for increasing Fe content can be mainly attributed to the Fe atoms in the Mn sites in both cases.
Reactions in aqueous-alcoholic solution between diphenyl-4-amine barium sulphonate (Ba-DAS-anionic surfactant) and the hydrated sulphates of Fe(III) and Fe(II) ions and their use to ovtain iron oxides are described here.
This article reports on the important influence of the spontaneously built-in paramagnetic interfacial layers on the magnetic and magnetoresistive properties of NiFe/Cu and Co/NiFe/Co/Cu multilayers grown by magnetron sputtering. A computational simulation, based on a semiclassical model, has been used to reproduce the variations of the resistivity and of the magnetoresistance ͑MR͒ amplitude with the thickness of the NiFe, Cu, and Co layers. We showed that the compositionally intermixed layers at NiFe/Cu interfaces, which are paramagnetic, reduce the flow of polarized electrons and produce a masking on the estimated mean-free path of both types of electrons due to the reduction of their effective values, mainly for small NiFe thickness. Moreover, the transmission coefficients for the electrons decrease when Fe buffer layers are replaced by NiFe ones. This result is interpreted in terms of the variations of the interfacial intermixing and roughness at the interfaces, leading to an increase of the paramagnetic interfacial layer thickness. The effect provoked by Co deposition at the NiFe 16 Å/Cu interfaces has also been investigated. The maximum of the MR amplitudes was found at 5 Å of Co, resulting in the quadruplication of the MR amplitude. This result is partially attributed to the interfacial spin-dependent scattering due to the increase of the magnetic order at interfaces. Another effect observed here was the increase of the spin-dependent scattering events in the bulk NiFe due to a larger effective NiFe thickness, since the paramagnetic interfacial layer thickness is decreased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.