The aim of the study was to observe the effects of dibutyrylchitin (DBC) on the repair processes and to explain the mechanisms of its action in comparison with other dressing materials made of butyrylchitin (BC), regenerated chitin (RC), and chitosan. The results showed that DBC implanted subcutaneously to the rats increased weight of the granulation tissue. Increased cell number isolated from the wound and cultured on the DBC films was also revealed. The DBC was proved to reduce also the necrotic cells number in the culture. DBC elevates the glycosaminoglycans (GAG) level in the granulation tissue. The total collagen content in the wound was not influenced by all applied dressing materials. However, a low level of the poorly polymerized soluble collagen in the wounds treated with DBC and BC indicated better polymerization of the remaining part of that protein. Both DBC and chitosan increased the weight of granulation tissue. However, chitosan contrary to DBC lowered GAG content and increased water capacity in the wound. The study documents the beneficial influence of DBC on the repair, which could be explained by the modification of the extracellular matrix and cells number. The best effects were observed after application of DBC with [eta] DBC-1 = 1.75 dL/g.
Studies presented in this paper concern wide issue of thermal comfort of protective clothing. The Computer Aided Design (CAD) software tools to analyze thermal insulation of multilayer textile assembly used in thermal protective clothing were applied. First, 3D geometry and morphology of a real textile assembly was modeled. In the designed model different scales of resolution were used for individual layers, ranging from a homogenized nonwoven fabrics model to mapping the geometry of yarns in woven fabrics model. Next, the finite volume method to estimate thermal insulation properties of this assembly, when exposed to heat radiation, was used. Finally, the simulation results were verified experimentally using method described in EN ISO 6942. On the basis of both simulation and experimental results obtained for the multilayer textile assembly, protective clothing parameters directly affecting the ability to protect against heat, were determined. Correlating simulated and experimental values of these parameters were obtained, which may indicate that applied software can be an effective tool in analyzing thermal properties of newly designed multilayer functional clothing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.