Introduction. Recently, wind power generation has grown at an alarming rate in the past decade and will continue to do so as power electronic technology continues to advance. Purpose. Super-twisting sliding mode control for brushless doubly-fed reluctance generator based on wind energy conversion system. Methods. This paper deals with the robust power control of a grid-connected brushless doubly-fed reluctance generator driven by the variable speed wind turbine using a variable structure control theory called sliding mode control. The traditional sliding mode approach produces an unpleasant chattering phenomenon that could harm the system. To eliminate chattering, it is necessary to employ a high-order sliding mode controller. The super-twisting algorithm is one type of nonlinear control presented in order to ensure the effectiveness of the control structure we tested these controllers in two different ways reference tracking, and robustness. Results. Simulation results using MATLAB/Simulink have demonstrated the effectiveness and robustness of the super-twisting sliding mode controller.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.