The laboratory experiments described in the present paper observe the blast-wave-driven RayleighTaylor instability with three-dimensional ͑3D͒ initial conditions. About 5 kJ of energy from the Omega laser creates conditions similar to those of the He-H interface during the explosion phase of a supernova. The experimental target is a 150 m thick plastic disk followed by a low-density foam. The plastic piece has an embedded, 3D perturbation. The basic structure of the pattern is two orthogonal sine waves where each sine wave has an amplitude of 2.5 m and a wavelength of 71 m. In some experiments, an additional wavelength is added to explore the interaction of modes. In experiments with 3D initial conditions the spike morphology differs from what has been observed in other Rayleigh-Taylor experiments and simulations. Under certain conditions, experimental radiographs show some mass extending from the interface to the shock front. Current simulations show neither the spike morphology nor the spike penetration observed in the experiments. The amount of mass reaching the shock front is analyzed and potential causes for the spike morphology and the spikes reaching the shock are discussed. One such hypothesis is that these phenomena may be caused by magnetic pressure, generated by an azimuthal magnetic field produced by the plasma dynamics.
This paper describes experiments exploring the three-dimensional (3D) Rayleigh–Taylor instability at a blast-wave-driven interface. This experiment is well scaled to the He/H interface during the explosion phase of SN1987A. In the experiments, ∼5 kJ of energy from the Omega laser was used to create a planar blast wave in a plastic disk, which is accelerated into a lower-density foam. These circumstances induce the Richtmyer–Meshkov instability and, after the shock passes the interface, the system quickly becomes dominated by the Rayleigh–Taylor instability. The plastic disk has an intentional pattern machined at the plastic/foam interface. This perturbation is 3D with a basic structure of two orthogonal sine waves with a wavelength of 71 μm and an amplitude of 2.5 μm. Additional long-wavelength modes with a wavelength of either 212 or 424 μm are added onto the single-mode pattern. The addition of the long-wavelength modes was motivated by the results of previous experiments where material penetrated unexpectedly to the shock front, perhaps due to an unintended structure. The current experiments and simulations were performed to explore the effects of this unintended structure; however, we were unable to reproduce the previous results.
Purpose: Noise characteristics of clinical multidetector CT (MDCT) systems can be quantified by the noise power spectrum (NPS). Although the NPS of CT has been extensively studied in the past few decades, the joint impact of the bowtie filter and object position on the NPS has not been systematically investigated. This work studies the interplay of these two factors on the two dimensional (2D) local NPS of a clinical CT system that uses the filtered backprojection algorithm for image reconstruction. Methods: A generalized NPS model was developed to account for the impact of the bowtie filter and image object location in the scan field-of-view (SFOV). For a given bowtie filter, image object, and its location in the SFOV, the shape and rotational symmetries of the 2D local NPS were directly computed from the NPS model without going through the image reconstruction process. The obtained NPS was then compared with the measured NPSs from the reconstructed noise-only CT images in both numerical phantom simulation studies and experimental phantom studies using a clinical MDCT scanner. The shape and the associated symmetry of the 2D NPS were classified by borrowing the well-known atomic spectral symbols s, p, and d, which correspond to circular, dumbbell, and cloverleaf symmetries, respectively, of the wave function of electrons in an atom. Finally, simulated bar patterns were embedded into experimentally acquired noise backgrounds to demonstrate the impact of different NPS symmetries on the visual perception of the object. Results: (1) For a central region in a centered cylindrical object, an s-wave symmetry was always present in the NPS, no matter whether the bowtie filter was present or not. In contrast, for a peripheral region in a centered object, the symmetry of its NPS was highly dependent on the bowtie filter, and both p-wave symmetry and d-wave symmetry were observed in the NPS. (2) For a centered region-ofinterest (ROI) in an off-centered object, the symmetry of its NPS was found to be different from that of a peripheral ROI in the centered object, even when the physical positions of the two ROIs relative to the isocenter were the same. (3) The potential clinical impact of the highly anisotropic NPS, caused by the interplay of the bowtie filter and position of the image object, was highlighted in images of specific bar patterns oriented at different angles. The visual perception of the bar patterns was found to be strongly dependent on their orientation. Conclusions: The NPS of CT depends strongly on the bowtie filter and object position. Even if the location of the ROI with respect to the isocenter is fixed, there can be different symmetries in the NPS, which depend on the object position and the size of the bowtie filter. For an isolated off-centered object, the NPS of its CT images cannot be represented by the NPS measured from a centered object. C 2016 American Association of Physicists in Medicine. [http://dx
Objective Disordered voices are often associated with abnormal changes in aerodynamic parameters of subglottal pressure and airflow. Phonation instability pressure (PIP) has been previously proposed to evaluate subglottal pressure at the onset of chaotic phonation. We propose the concept of and measure phonation instability flow (PIF), the airflow at which phonation becomes chaotic. Phonation flow range (PFR), PIF minus phonation threshold flow (PTF), is proposed to assess the range over which normal vocal fold vibration occurs. Study Design Repeated measures with each ex vivo larynx serving as its own control. Methods Pressure and airflow were measured at phonation onset and chaos onset in seven excised canine larynges under three experimental conditions: 0% elongation with no glottal gap; 20% elongation with no glottal gap; 20% elongation with a 3 mm posterior glottal gap. Paired t-tests were performed to determine if experimental measurements differed between elongations (0% and 20%) or degrees of abduction (20% elongation with and without a 3 mm glottal gap). Results Both PIF and PFR were dependent on abduction but not elongation. PIP was not significantly dependent on either condition. PIF and PFR showed greater differences for abduction than either phonation threshold pressure (PTP) or PTF. Conclusions PIF and PFR may be useful parameters in the experimental or clinical settings, particularly when evaluating disorders characterized by a glottal gap such as vocal fold paralysis and presbylaryngis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.