The structure of the classical acute phase reactant human C-reactive protein provides evidence that phosphocholine binding is mediated through calcium and a hydrophobic pocket centred on Phe 66. The residue Glu 81 is suitably positioned to interact with the choline group. A cleft on the pentameric face opposite to that containing the calcium site may have an important functional role. The structure provides insights into the molecular mechanisms by which this highly conserved plasma protein, for which no polymorphism or deficiency state is known, may exert its biological role.
Most continuous antigenic determinants of tobacco mosaic virus protein (TMVP), myoglobin and lysozyme correspond to those surface regions in the protein structure, as determined by X-ray crystallography, which possess a run of high-temperature factors along the polypeptide backbone, that is, a high segmental mobility. The mobility of an antigenic determinant may make it easier to adjust to a pre-existing antibody site not fashioned to fit the exact geometry of a protein. The correlation found between temperature factors and antigenicity is better than that between hydrophilicity and antigenicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.