Blood coagulation is initiated when tissue factor binds to coagulation factor VIIa to give an enzymatically active complex which then activates factors IX and X, leading to thrombin generation and clot formation. We have determined the crystal structure at 2.0-A degrees resolution of active-site-inhibited factor VIIa complexed with the cleaved extracellular domain of tissue factor. In the complex, factor VIIa adopts an extended conformation. This structure provides a basis for understanding many molecular aspects of the initiation of coagulation.
Fluorinated compounds are synthesized in pharmaceutical research on a routine basis and many marketed compounds contain fluorine. The present review summarizes some of the most frequently employed strategies for using fluorine substituents in medicinal chemistry. Quite often, fluorine is introduced to improve the metabolic stability by blocking metabolically labile sites. However, fluorine can also be used to modulate the physicochemical properties, such as lipophilicity or basicity. It may exert a substantial effect on the conformation of a molecule. Increasingly, fluorine is used to enhance the binding affinity to the target protein. Recent 3D-structure determinations of protein complexes with bound fluorinated ligands have led to an improved understanding of the nonbonding protein-ligand interactions that involve fluorine.
The crystal structure of EcoRV endonuclease has been determined at 2.5 A resolution and that of its complexes with the cognate DNA decamer GGGATATCCC (recognition sequence underlined) and the non‐cognate DNA octamer CGAGCTCG at 3.0 A resolution. Two octamer duplexes of the non‐cognate DNA, stacked end‐to‐end, are bound to the dimeric enzyme in B‐DNA‐like conformations. The protein‐‐DNA interactions of this complex are prototypic for non‐specific DNA binding. In contrast, only one cognate decamer duplex is bound and deviates considerably from canonical B‐form DNA. Most notably, a kink of approximately 50 degrees is observed at the central TA step with a concomitant compression of the major groove. Base‐specific hydrogen bonds between the enzyme and the recognition base pairs occur exclusively in the major groove. These interactions appear highly co‐operative as they are all made through one short surface loop comprising residues 182–186. Numerous contacts with the sugar phosphate backbone extending beyond the recognition sequence are observed in both types of complex. However, the total surface area buried on complex formation is > 1800 A2 larger in the case of cognate DNA binding. Two acidic side chains, Asp74 and Asp90, are close to the reactive phosphodiester group in the cognate complex and most probably provide oxygen ligands for binding the essential cofactor Mg2+. An important role is also indicated for Lys92, which together with the two acidic functions appears to be conserved in the otherwise unrelated structure of EcoRI endonuclease. The structural results give new insight into the physical basis of the remarkable sequence specificity of this enzyme.
Halogen bonding triggers activity: Increasing binding affinity was observed for a series of covalent human Cathepsin L inhibitors by exchanging an aryl ring H atom with Cl, Br, and I, which undergo halogen bonding with the CO group of Gly61 in the S3 pocket of the enzyme. Fluorine, in contrast, strongly avoids halogen bonding (see scheme). The strong distance and angle dependence of halogen bonding was confirmed for biological systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.