This review focuses on the wear mechanisms of natural and restorative dental materials, presenting a comprehensive description and analysis of the works published in the last two decades on the wear at the interface of occlusal surfaces. Different groups of tribological pairs were considered: tooth-tooth, tooth-restorative material (tooth-ceramic, tooth-resin-based-materials, and tooth-metal), and restorative-restorative materials. The lack of standardization of the wear tests impairs the direct comparison of the obtained results. However, it was possible to infer about the main wear mechanisms observed on the different classes of dental materials. Concerning ceramics, their toughness and surface finishing determines the wear of antagonist tooth. Abrasion revealed to be the main wear mechanisms at occlusal interface. In the case of resin-based composites, the cohesion of the organic matrix and the nature, shape, and amount of filler particles greatly influences the dental wear. The protruding and detachment of the filler particles are the main causes of abrasion of antagonist enamel. Metallic materials induce lower wear on antagonist enamel than the other classes of materials, because of their low hardness and high ductility. Most of the studies revealed plastic deformation and adhesive wear as the main wear mechanisms. Overall, more research in this area is needed for a better understanding of the mechanisms involved at the occlusal surfaces wear. This would be essential for the development of more suitable restoration materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.