We study the dynamics of the batch minority game, with random external information, using generating functional techniques introduced by De Dominicis. The relevant control parameter in this model is the ratio alpha=p/N of the number p of possible values for the external information over the number N of trading agents. In the limit N-->infinity we calculate the location alphac of the phase transition (signaling the onset of anomalous response), and solve the statics for alpha>alphac exactly. The temporal correlations in global market fluctuations turn out not to decay to zero for infinitely widely separated times. For alpha
Abstract. Pattern-diluted associative networks were introduced recently as models for the immune system, with nodes representing T-lymphocytes and stored patterns representing signalling protocols between T-and B-lymphocytes. It was shown earlier that in the regime of extreme pattern dilution, a system with N T Tlymphocytes can manage a number N B = O(N δ T ) of B-lymphocytes simultaneously, with δ < 1. Here we study this model in the extensive load regime N B = αN T , with also a high degree of pattern dilution, in agreement with immunological findings. We use graph theory and statistical mechanical analysis based on replica methods to show that in the finite-connectivity regime, where each T-lymphocyte interacts with a finite number of B-lymphocytes as N T → ∞, the T-lymphocytes can coordinate effective immune responses to an extensive number of distinct antigen invasions in parallel. As α increases, the system eventually undergoes a second order transition to a phase with clonal cross-talk interference, where the system's performance degrades gracefully. Mathematically, the model is equivalent to a spin system on a finitely connected graph with many short loops, so one would expect the available analytical methods, which all assume locally tree-like graphs, to fail. Yet it turns out to be solvable. Our results are supported by numerical simulations.
Abstract. We study a family of diluted attractor neural networks with a finite average number of (symmetric) connections per neuron. As in finite connectivity spin glasses, their equilibrium properties are described by order parameter functions, for which we derive an integral equation in replica symmetric (RS) approximation. A bifurcation analysis of this equation reveals the locations of the paramagnetic to recall and paramagnetic to spin-glass transition lines in the phase diagram. The line separating the retrieval phase from the spin-glass phase is calculated at zero temperature. All phase transitions are found to be continuous.
Abstract. We study the dynamics of bond-disordered Ising spin systems on random graphs with finite connectivity, using generating functional analysis. Rather than disorder-averaged correlation and response functions (as for fully connected systems), the dynamic order parameter is here a measure which represents the disorder averaged single-spin path probabilities, given external perturbation field paths. In the limit of completely asymmetric graphs our macroscopic laws close already in terms of the singlespin path probabilities at zero external field. For the general case of arbitrary graph symmetry we calculate the first few time steps of the dynamics exactly, and we work out (numerical and analytical) procedures for constructing approximate stationary solutions of our equations. Simulation results support our theoretical predictions.
We solve the dynamics of the on-line minority game, with general types of decision noise, using generating functional techniques a la De Dominicis and the temporal regularization procedure of Bedeaux et al. The result is a macroscopic dynamical theory in the form of closed equations for correlation-and response functions defined via an effective continuous-time single-trader process, which are exact in both the ergodic and in the non-ergodic regime of the minority game. Our solution also explains why, although one cannot formally truncate the Kramers-Moyal expansion of the process after the Fokker-Planck term, upon doing so one still finds the correct solution, that the previously proposed diffusion matrices for the Fokker-Planck term are incomplete, and how previously proposed approximations of the market volatility can be traced back to ergodicity assumptions.PACS numbers: 02.50.Le, 87.23.Ge, 05.70.Ln, 64.60.Ht ‡ Using a phenomenological theory for the volatility, based on so-called 'crowd-anticrowd' cancellations [7], this effect was partially explained in [8,9].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.