Experimental nuclear level densities at excitation energies below the neutron threshold follow closely a constant-temperature shape. This dependence is unexpected and poorly understood. In this work, a fundamental explanation of the observed constanttemperature behavior in atomic nuclei is presented for the first time. It is shown that the experimental data portray a first-order phase transition from a superfluid to an ideal gas of non-interacting quasiparticles. Even-even, odd-A, and odd-odd level densities show in detail the behavior of gap-and gapless superconductors also observed in solid-state physics. These results and analysis should find a direct application to mesoscopic systems such as superconducting clusters.
The validity of the Brink-Axel hypothesis, which is especially important for numerous astrophysical calculations, is addressed for 116;120;124 Sn below the neutron separation energy by means of three independent experimental methods. The γ-ray strength functions (GSFs) extracted from primary γ-decay spectra following charged-particle reactions with the Oslo method and with the shape method demonstrate excellent agreement with those deduced from forward-angle inelastic proton scattering at relativistic beam energies. In addition, the GSFs are shown to be independent of excitation energies and spins of the initial and final states. The results provide a critical test of the generalized Brink-Axel hypothesis in heavy nuclei, demonstrating its applicability in the energy region of the pygmy dipole resonance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.