Fresh forages constitute a majority of the diet for many horses and ponies that graze on pastures during the growing season in many parts of the world. Grasses generally predominate in such pastures, with varying proportions of legumes. Nonstructural carbohydrates (NSC) (simple sugars, starch, and fructan) can induce laminitis experimentally, and NSC can accumulate to >400 g/kg of dry matter (DM) in pasture grasses. In this article we discuss the environmental factors affecting NSC accumulation in pastures and estimate the potential daily intakes of pasture NSC by grazing horses. We also discuss strategies for both reducing the NSC content of pastures and management practices that can help reduce intakes of pasture NSC by equines at risk of developing laminitis. This study reveals the importance of accurate forage analysis in the development of feeding regimens for equines at risk of laminitis.
Pigs (25-45 kg) were fed on either cereal or semi-purified basal diets supplemented with either high or low levels of sugar-beet pulp or wood cellulose (Solka-floc). The apparent digestibility and retention of N and apparent digestibility and metabolizability of energy (GE) and the apparent digestibility of nonstarch polysaccharides (NSP) and their constituent monomers were measured during weeks 2, 4 and 6 of the trial. N and GE were less well-digested, retained or metabolized from cereal basal diets than from the corresponding semi-purified diets during all three periods. N S P from sugar-beet pulp was highly digestible, unlike that from Soka-floc which was relatively poorly digested. These differences of NSP digestibility were seen more clearly when incorporated in semi-purified diets. There was no significant increase in the digestibility or retention of N, or digestibility or metabolizability of GE, or in the digestibility of sugar-beet pulp N S P with increasing time-period on the diets. In contrast, the digestibility of Solka-floc N S P tended to increase with the time-period. The digestibility of N S P from the semipurified diet with the high level of Solka-floc inclusion was much lower than that for the low level of inclusion, indicating that microbial activity had been reduced. In conclusion, adaptation to the diets in terms of N and G E balance may be complete after 1 week, but 3-5 weeks may be necessary before stability of measurements of the digestibility of resistant NSP monomers can be obtained.Non-starch polysaccharides: Digestibility : Pigs
An in sacco mobile bag technique was used to determine the rate and extent of disappearance of unmolassed sugar-beet pulp, soyabean hulls, hay cubes and an oat hull -naked oats mixture (67:33, w/w) in the foregut and total digestive tract of ponies. Ponies were administered naso-gastrically polyester mesh bags ð60 £ 10 £ 10 mmÞ containing 350 mg feed, in a 3 £ 4 Latin square design. Bags were collected at the ileo-caecal junction (small intestine bag, SIB) and in the faeces (faecal bag, FB) and their residues analysed for proximate constituents and NSP composition and content. DM disappearances from individual bags were fitted to degradation profiles (Ørskov & McDonald, 1979) and effective degradability values determined. Significant differences (P, 0·05) in DM, organic matter and crude protein ðN £ 6·25Þ losses from SIB were noted between feeds with hay cubes and oat hulls -naked oats . sugar-beet pulp and soyabean hulls. Acid-detergent fibre, neutral-detergent fibre and NSP disappearances were small and varied little between feeds. In contrast, FB losses showed significant (P, 0·05) differences for all constituents measured with sugar-beet pulp . soyabean hulls . hay cubes . oat hulls -naked oats. Crude protein losses from sugar-beet pulp and soyabean hulls in FB were significantly higher (P, 0·05) than from SIB. FB degradation curves showed degradation to be affected by bag residence time with sugar-beet pulp . soyabean hulls and the effective degradability showed that significantly more (P,0·05) sugar-beet pulp was lost at 40.0 and 60.0 h than for the other three feeds. These results show that sugar-beet pulp and soyabean hulls are rapidly degraded by ponies and could be used as alternatives to hay in equid rations. However, the foregut availability of crude protein from sugar-beet pulp is poor, so a readily digestible source of crude protein should be offered to animals with high protein demands when diets are based on sugar-beet pulp.
Five different hays were used to determine the effect of 5 different soaking and steaming treatments on the water soluble carbohydrate and microbial (bacteria and mould) contents of UK hay. Hays were subjected to the following 5 treatments: 1. Dry; 2. Steamed for 50 minutes in the Haygain- 600 steamer; 3. Soaked in water at 16°C for 9 hours; 4. Steamed then soaked and 5. Soaked then steamed. Post treatment hays were tested for water soluble carbohydrates, bacteria and mould contents. Differences between means were determined using ANOVA and least significant difference with hay (5), bale (3) and treatment (5) as fixed factors, thus n = 75. Protein and ash proportions were unaltered in any of the treatments. Soaked, steamed then soaked and soaked then steamed treatments were all equally effective at reducing water soluble carbohydrates, with significantly (P<0.05) lower mean contents (79–83 g/kg DM) compared with 126 and 122 g/kg dry matter (DM) for dry and steamed respectively. Steamed and soaked then steamed had significantly (P<0.05) less bacteria (1.04×103 and 4.9×102 CFU/g DM) compared with soaked which increased CFU/g DM from 6.0×104 in dry hay up to 3.5×105. Mould contents CFU/g DM were significantly (P<0.05) reduced by steaming (2) and soaking then steaming (1.9) but no difference was seen between dry (1148), soaked (692) or steamed then soaked (501). Soaking for 9 hours followed by steaming for 50 minutes in the Haygain steamer was the most effective method for reducing water soluble carbohydrates and microbial contamination in hay. Soaking or steaming+soaking lowered water soluble carbohydrates but significantly reduced the hygienic quality of the hay which could potentially compromise the health of the horse.
Welsh-cross pony geldings (about 300 kg live weight) were used in a 4£4 Latin square experiment to determine the rate of passage and apparent digestibility of unchopped big-bale grass silage (BBL), chopped big-bale grass silage (BBS), unchopped grass hay (HL) and chopped grass hay (HS) offered at approximately 15 g/kg live weight per d. On day 1 of collection weeks, ponies were fed 85 g ytterbium chloride hexahydrate-marked feed 1·5 h after the morning meal. Total faecal collections commenced 8 h later and continued for 168 h. Apparent digestibilities of feed DM, organic matter (OM), crude protein (CP, N£6·25), acid-detergent fibre (ADF) and neutral-detergent fibre (NDF) were also determined. Faecal excretion data were subjected to the models of Pond et al. (1988) and digesta mean retention time (MRT) calculated from these models and using the algebraic method of Thielmans et al. (1978). Silage had significantly (P, 0·05) higher digestibilities of DM, OM, CP, ADF and NDF than hay; however, chop length had no effect. All the models of Pond et al. (1988) accurately described (R 2 .0·8) the pattern of faecal marker excretion. MRT of BBL (29·0 h). BBS(27 h). HS and HL (26 h).Compartmental analysis using the G3 model of Pond et al. (1988) showed BBL and HS diets had longer MRT in the time-dependent compartment, whereas BBS and HL had longer MRT in the time-independent compartment. Results from this experiment indicate that BBL and BBS are readily accepted and digested by ponies. While Yb is a successful external marker for determining total tract MRT and for modelling faecal excretion curves in horses, the results did not allow any definite conclusions to be drawn on digesta MRT within the different compartments of the equid gut. Digesta passage rate: Mean retention time: Apparent digestibility: Horse
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.